class String
inherits Reference
¶
A String represents an immutable sequence of UTF-8 characters.
A String is typically created with a string literal, enclosing UTF-8 characters
in double quotes:
"hello world"
A backslash can be used to denote some characters inside the string:
"\"" # double quote
"\\" # backslash
"\e" # escape
"\f" # form feed
"\n" # newline
"\r" # carriage return
"\t" # tab
"\v" # vertical tab
You can use a backslash followed by an u and four hexadecimal characters to denote a unicode codepoint written:
"\u0041" # == "A"
Or you can use curly braces and specify up to six hexadecimal numbers (0 to 10FFFF):
"\u{41}" # == "A"
A string can span multiple lines:
"hello
world" # same as "hello\n world"
Note that in the above example trailing and leading spaces, as well as newlines, end up in the resulting string. To avoid this, you can split a string into multiple lines by joining multiple literals with a backslash:
"hello " \
"world, " \
"no newlines" # same as "hello world, no newlines"
Alternatively, a backslash followed by a newline can be inserted inside the string literal:
"hello \
world, \
no newlines" # same as "hello world, no newlines"
In this case, leading whitespace is not included in the resulting string.
If you need to write a string that has many double quotes, parentheses, or similar characters, you can use alternative literals:
# Supports double quotes and nested parentheses
%(hello ("world")) # same as "hello (\"world\")"
# Supports double quotes and nested brackets
%[hello ["world"]] # same as "hello [\"world\"]"
# Supports double quotes and nested curlies
%{hello {"world"}} # same as "hello {\"world\"}"
# Supports double quotes and nested angles
%<hello <"world">> # same as "hello <\"world\">"
To create a String with embedded expressions, you can use string interpolation:
a = 1
b = 2
"sum = #{a + b}" # "sum = 3"
This ends up invoking Object#to_s(IO) on each expression enclosed by #{...}.
If you need to dynamically build a string, use String#build or IO::Memory.
Non UTF-8 valid strings¶
String might end up being conformed of bytes which are an invalid
byte sequence according to UTF-8. This can happen if the string is created
via one of the constructors that accept bytes, or when getting a string
from String.build or IO::Memory. No exception will be raised, but
invalid byte sequences, when asked as chars, will use the unicode replacement
char (value 0xFFFD). For example:
# here 255 is not a valid byte value in the UTF-8 encoding
string = String.new(Bytes[255, 97])
string.valid_encoding? # => false
# The first char here is the unicode replacement char
string.chars # => ['�', 'a']
One can also create strings with specific byte value in them by using octal and hexadecimal escape sequences:
# Octal escape sequences
"\101" # # => "A"
"\12" # # => "\n"
"\1" # string with one character with code point 1
"\377" # string with one byte with value 255
# Hexadecimal escape sequences
"\x41" # # => "A"
"\xFF" # string with one byte with value 255
The reason for allowing strings that don't have a valid UTF-8 sequence is that the world is full of content that isn't properly encoded, and having a program raise an exception or stop because of this is not good. It's better if programs are more resilient, but show a replacement character when there's an error in incoming data.
Included modules
Comparable
Class methods¶
.from_utf16(pointer : Pointer(UInt16)) : Tuple(String, Pointer(UInt16))
¶
(pointer : Pointer(UInt16)) : Tuple(String, Pointer(UInt16))
Decodes the given slice UTF-16 sequence into a String and returns the pointer after reading. The string ends when a zero value is found.
slice = Slice[104_u16, 105_u16, 0_u16, 55296_u16, 56485_u16, 0_u16]
String.from_utf16(slice) # => "hi\0000𐂥"
pointer = slice.to_unsafe
string, pointer = String.from_utf16(pointer) # => "hi"
string, pointer = String.from_utf16(pointer) # => "𐂥"
Invalid values are encoded using the unicode replacement char with
codepoint 0xfffd.
.interpolation(*values : *T) forall T
¶
(*values : *T) forall T
Implementation of string interpolation of multiple, possibly non-string values.
For example, this code will end up invoking this method:
value1 = "hello"
value2 = 123
"#{value1} #{value2}!" # same as String.interpolation(value1, " ", value2, "!")
In this case the implementation will call String.build with the given values.
Note
there should never be a need to call this method instead of using string interpolation.
.interpolation(*values : String)
¶
(*values : String)
Implementation of string interpolation of multiple string values.
For example, this code will end up invoking this method:
value1 = "hello"
value2 = "world"
"#{value1} #{value2}!" # same as String.interpolation(value1, " ", value2, "!")
In this case the implementation can pre-compute the needed string bytesize and so it's a bit more performant than interpolating non-string values.
Note
there should never be a need to call this method instead of using string interpolation.
.interpolation(value)
¶
(value)
Implementation of string interpolation of a single non-string value.
For example, this code will end up invoking this method:
value = 123
"#{value}" # same as String.interpolation(value)
In this case the implementation just returns the result of calling value.to_s.
Note
there should never be a need to call this method instead of using string interpolation.
.interpolation(value : String)
¶
(value : String)
Implementation of string interpolation of a single string.
For example, this code will end up invoking this method:
value = "hello"
"#{value}" # same as String.interpolation(value)
In this case the implementation just returns the same string.
Note
there should never be a need to call this method instead of using string interpolation.
.interpolation(char : Char, value : String)
¶
(char : Char, value : String)
Implementation of string interpolation of a char and a string.
For example, this code will end up invoking this method:
char = '!'
"#{char}hello" # same as String.interpolation(char, "hello")
In this case the implementation just does char + value.
Note
there should never be a need to call this method instead of using string interpolation.
.interpolation(value : String, char : Char)
¶
(value : String, char : Char)
Implementation of string interpolation of a string and a char.
For example, this code will end up invoking this method:
char = '!'
"hello#{char}" # same as String.interpolation("hello", char)
In this case the implementation just does value + char.
Note
there should never be a need to call this method instead of using string interpolation.
.build(capacity = 64, &) : self
¶
(capacity = 64, &) : self
Builds a String by creating a String::Builder with the given initial capacity, yielding
it to the block and finally getting a String out of it. The String::Builder automatically
resizes as needed.
str = String.build do |str|
str << "hello "
str << 1
end
str # => "hello 1"
.from_utf16(slice : Slice(UInt16)) : String
¶
(slice : Slice(UInt16)) : String
Decodes the given slice UTF-16 sequence into a String.
Invalid values are encoded using the unicode replacement char with
codepoint 0xfffd.
slice = Slice[104_u16, 105_u16, 32_u16, 55296_u16, 56485_u16]
String.from_utf16(slice) # => "hi 𐂥"
.new(capacity : Int
¶
(capacity : Int
Creates a new String by allocating a buffer (Pointer(UInt8)) with the given capacity, then
yielding that buffer. The block must return a tuple with the bytesize and size
(UTF-8 codepoints count) of the String. If the returned size is zero, the UTF-8 codepoints
count will be lazily computed.
The bytesize returned by the block must be less than or equal to the
capacity given to this String, otherwise ArgumentError is raised.
If you need to build a String where the maximum capacity is unknown, use String#build.
str = String.new(4) do |buffer|
buffer[0] = 'a'.ord.to_u8
buffer[1] = 'b'.ord.to_u8
{2, 2}
end
str # => "ab"
.new(slice : Bytes)
¶
(slice : Bytes)
Creates a String from the given slice. Bytes will be copied from the slice.
This method is always safe to call, and the resulting string will have the contents and size of the slice.
slice = Slice.new(4) { |i| ('a'.ord + i).to_u8 }
String.new(slice) # => "abcd"
.new(chars : Pointer(UInt8))
¶
(chars : Pointer(UInt8))
Creates a String from a pointer. Bytes will be copied from the pointer.
This method is unsafe: the pointer must point to data that eventually contains a zero byte that indicates the ends of the string. Otherwise, the result of this method is undefined and might cause a segmentation fault.
This method is typically used in C bindings, where you get a char* from a
library and the library guarantees that this pointer eventually has an
ending zero byte.
ptr = Pointer.malloc(5) { |i| i == 4 ? 0_u8 : ('a'.ord + i).to_u8 }
String.new(ptr) # => "abcd"
.new(chars : Pointer(UInt8), bytesize, size = 0)
¶
(chars : Pointer(UInt8), bytesize, size = 0)
Creates a new String from a pointer, indicating its bytesize count
and, optionally, the UTF-8 codepoints count (size). Bytes will be
copied from the pointer.
If the given size is zero, the amount of UTF-8 codepoints will be lazily computed when needed.
ptr = Pointer.malloc(4) { |i| ('a'.ord + i).to_u8 }
String.new(ptr, 2) # => "ab"
.new(bytes : Bytes, encoding : String, invalid : Symbol? = nil) : String
¶
(bytes : Bytes, encoding : String, invalid : Symbol? = nil) : String
Creates a new String from the given bytes, which are encoded in the given encoding.
The invalid argument can be:
* nil: an exception is raised on invalid byte sequences
* :skip: invalid byte sequences are ignored
slice = Slice.new(2, 0_u8)
slice[0] = 186_u8
slice[1] = 195_u8
String.new(slice, "GB2312") # => "好"
Methods¶
#%(other)
¶
(other)
Interpolates other into the string using top-level ::sprintf.
"I have %d apples" % 5 # => "I have 5 apples"
"%s, %s, %s, D" % ['A', 'B', 'C'] # => "A, B, C, D"
"sum: %{one} + %{two} = %{three}" % {one: 1, two: 2, three: 1 + 2} # => "sum: 1 + 2 = 3"
"I have %<apples>s apples" % {apples: 4} # => "I have 4 apples"
#*(times : Int)
¶
(times : Int)
Makes a new String by adding str to itself times times.
"Developers! " * 4
# => "Developers! Developers! Developers! Developers! "
#+(char : Char)
¶
(char : Char)
Concatenates str and other.
"abc" + "def" # => "abcdef"
"abc" + 'd' # => "abcd"
#+(other : self)
¶
(other : self)
Concatenates str and other.
"abc" + "def" # => "abcdef"
"abc" + 'd' # => "abcd"
#<=>(other : self)
¶
(other : self)
The comparison operator.
Compares this string with other, returning -1, 0 or 1 depending on whether
this string is less, equal or greater than other.
Comparison is done byte-per-byte: if a byte is less then the other corresponding
byte, -1 is returned and so on.
If the strings are of different lengths, and the strings are equal when compared up to the shortest length, then the longer string is considered greater than the shorter one.
"abcdef" <=> "abcde" # => 1
"abcdef" <=> "abcdef" # => 0
"abcdef" <=> "abcdefg" # => -1
"abcdef" <=> "ABCDEF" # => 1
#==(other : self) : Bool
¶
(other : self) : Bool
Returns true if this string is equal to *other*.
Comparison is done byte-per-byte: if a byte is different from the corresponding
byte,false` is returned and so on.
See #compare for more comparison options.
#=~(regex : Regex)
¶
(regex : Regex)
Tests whether str matches regex.
If successful, it returns the position of the first match.
If unsuccessful, it returns nil.
If the argument isn't a Regex, it returns nil.
"Haystack" =~ /ay/ # => 1
"Haystack" =~ /z/ # => nil
"Haystack" =~ 45 # => nil
#=~(other)
¶
(other)
Tests whether str matches regex.
If successful, it returns the position of the first match.
If unsuccessful, it returns nil.
If the argument isn't a Regex, it returns nil.
"Haystack" =~ /ay/ # => 1
"Haystack" =~ /z/ # => nil
"Haystack" =~ 45 # => nil
#[](start : Int, count : Int)
¶
(start : Int, count : Int)
Returns a substring starting from the start character of size count.
start can can be negative to start counting from the end of the string.
Raises IndexError if the start index is out of bounds.
Raises ArgumentError if count is negative.
#[](range : Range)
¶
(range : Range)
Returns a substring by using a Range's begin and end as character indices. Indices can be negative to start counting from the end of the string.
Raises IndexError if the range's start is out of bounds.
"hello"[0..2] # => "hel"
"hello"[0...2] # => "he"
"hello"[1..-1] # => "ello"
"hello"[1...-1] # => "ell"
"hello"[6..7] # raises IndexError
#[](index : Int)
¶
(index : Int)
Returns the Char at the given index.
Negative indices can be used to start counting from the end of the string.
Raises IndexError if the index is out of bounds.
"hello"[0] # => 'h'
"hello"[1] # => 'e'
"hello"[-1] # => 'o'
"hello"[-2] # => 'l'
"hello"[5] # raises IndexError
#[]?(start : Int, count : Int)
¶
(start : Int, count : Int)
Like #[Int, Int] but returns nil if the start index is out of bounds.
#[]?(range : Range)
¶
(range : Range)
Like #[Range], but returns nil if the range's start is out of bounds.
"hello"[6..7]? # => nil
"hello"[6..]? # => nil
#ascii_only?
¶
Returns true if this String is comprised in its entirety
by ASCII characters.
"hello".ascii_only? # => true
"你好".ascii_only? # => false
#blank?
¶
Returns true if this string consists exclusively of unicode whitespace.
"".blank? # => true
" ".blank? # => true
" a ".blank? # => false
#byte_at(index) : UInt8
¶
(index) : UInt8
Returns the byte at the given index.
Raises IndexError if the index is out of bounds.
"¥hello".byte_at(0) # => 194
"¥hello".byte_at(1) # => 165
"¥hello".byte_at(2) # => 104
"¥hello".byte_at(-1) # => 111
"¥hello".byte_at(6) # => 111
"¥hello".byte_at(7) # raises IndexError
#byte_at
¶
Returns the byte at the given index, or yields if out of bounds.
"¥hello".byte_at(6) { "OUT OF BOUNDS" } # => 111
"¥hello".byte_at(7) { "OUT OF BOUNDS" } # => "OUT OF BOUNDS"
#byte_at?(index) : UInt8?
¶
(index) : UInt8?
Returns the byte at the given index, or nil if out of bounds.
"¥hello".byte_at?(0) # => 194
"¥hello".byte_at?(1) # => 165
"¥hello".byte_at?(2) # => 104
"¥hello".byte_at?(-1) # => 111
"¥hello".byte_at?(6) # => 111
"¥hello".byte_at?(7) # => nil
#byte_index(search : String, offset = 0) : Int32?
¶
(search : String, offset = 0) : Int32?
Returns the byte index of search in the string, or nil if the string is not present.
If offset is present, it defines the position to start the search.
Negative offset can be used to start the search from the end of the string.
"¥hello".byte_index("hello") # => 2
"hello".byte_index("world") # => nil
"Dizzy Miss Lizzy".byte_index("izzy") # => 1
"Dizzy Miss Lizzy".byte_index("izzy", 2) # => 12
"Dizzy Miss Lizzy".byte_index("izzy", -4) # => 12
"Dizzy Miss Lizzy".byte_index("izzy", -3) # => nil
#byte_index(byte : Int, offset = 0) : Int32?
¶
(byte : Int, offset = 0) : Int32?
Returns the index of the first occurrence of byte in the string, or nil if not present.
If offset is present, it defines the position to start the search.
Negative offset can be used to start the search from the end of the string.
"Hello, World".byte_index(0x6f) # => 4
"Hello, World".byte_index(0x5a) # => nil
"Hello, World".byte_index(0x6f, 5) # => 8
"💣".byte_index(0xA3) # => 3
"Dizzy Miss Lizzy".byte_index('z'.ord) # => 2
"Dizzy Miss Lizzy".byte_index('z'.ord, 3) # => 3
"Dizzy Miss Lizzy".byte_index('z'.ord, -4) # => 13
"Dizzy Miss Lizzy".byte_index('z'.ord, -17) # => nil
#byte_index_to_char_index(index)
¶
(index)
Returns the char index of a byte index, or nil if out of bounds.
It is valid to pass #bytesize to index, and in this case the answer
will be the size of this string.
#byte_slice(start : Int) : String
¶
(start : Int) : String
Returns a substring starting from the start byte.
start can can be negative to start counting from the end of the string.
This method should be avoided,
unless the string is proven to be ASCII-only (for example #ascii_only?),
or the byte positions are known to be at character boundaries.
Otherwise, multi-byte characters may be split, leading to an invalid UTF-8 encoding.
Raises IndexError if start index is out of bounds.
"hello".byte_slice(0) # => "hello"
"hello".byte_slice(2) # => "llo"
"hello".byte_slice(-2) # => "lo"
"¥hello".byte_slice(2) # => "hello"
"¥hello".byte_slice(1) # => "�hello" (invalid UTF-8 character)
"hello".byte_slice(6) # raises IndexError
"hello".byte_slice(-6) # raises IndexError
#byte_slice(start : Int, count : Int) : String
¶
(start : Int, count : Int) : String
Returns a new string built from count bytes starting at start byte.
start can can be negative to start counting
from the end of the string.
If count is bigger than the number of bytes from start to #bytesize,
only remaining bytes are returned.
This method should be avoided,
unless the string is proven to be ASCII-only (for example #ascii_only?),
or the byte positions are known to be at character boundaries.
Otherwise, multi-byte characters may be split, leading to an invalid UTF-8 encoding.
Raises IndexError if the start index is out of bounds.
Raises ArgumentError if count is negative.
"hello".byte_slice(0, 2) # => "he"
"hello".byte_slice(0, 100) # => "hello"
"hello".byte_slice(-2, 3) # => "he"
"hello".byte_slice(-2, 5) # => "he"
"hello".byte_slice(-2, 5) # => "he"
"¥hello".byte_slice(0, 2) # => "¥"
"¥hello".byte_slice(2, 2) # => "he"
"¥hello".byte_slice(0, 1) # => "�" (invalid UTF-8 character)
"¥hello".byte_slice(1, 1) # => "�" (invalid UTF-8 character)
"¥hello".byte_slice(1, 2) # => "�h" (invalid UTF-8 character)
"hello".byte_slice(6, 2) # raises IndexError
"hello".byte_slice(-6, 2) # raises IndexError
"hello".byte_slice(0, -2) # raises ArgumentError
#byte_slice?(start : Int, count : Int) : String?
¶
(start : Int, count : Int) : String?
Like byte_slice(Int, Int) but returns Nil if the start index is out of bounds.
Raises ArgumentError if count is negative.
"hello".byte_slice?(0, 2) # => "he"
"hello".byte_slice?(0, 100) # => "hello"
"hello".byte_slice?(6, 2) # => nil
"hello".byte_slice?(-6, 2) # => nil
"hello".byte_slice?(0, -2) # raises ArgumentError
#bytes
¶
Returns this string's bytes as an Array(UInt8).
"hello".bytes # => [104, 101, 108, 108, 111]
"你好".bytes # => [228, 189, 160, 229, 165, 189]
#bytesize : Int32
¶
: Int32
Returns the number of bytes in this string.
"hello".bytesize # => 5
"你好".bytesize # => 6
#camelcase(io : IO, options : Unicode::CaseOptions = Unicode::CaseOptions::None, *, lower : Bool = false) : Nil
¶
(io : IO, options : Unicode::CaseOptions = Unicode::CaseOptions::None, *, lower : Bool = false) : Nil
Writes an camelcased version of self to the given io.
If lower is true, lower camelcase will be written (the first letter is downcased).
io = IO::Memory.new
"eiffel_tower".camelcase io
io.to_s # => "EiffelTower"
#camelcase(options : Unicode::CaseOptions = Unicode::CaseOptions::None, *, lower : Bool = false) : String
¶
(options : Unicode::CaseOptions = Unicode::CaseOptions::None, *, lower : Bool = false) : String
Converts underscores to camelcase boundaries.
If lower is true, lower camelcase will be returned (the first letter is downcased).
"eiffel_tower".camelcase # => "EiffelTower"
"empire_state_building".camelcase(lower: true) # => "empireStateBuilding"
"isolated_integer".camelcase(options: Unicode::CaseOptions::Turkic) # => "İsolatedİnteger"
#capitalize(options : Unicode::CaseOptions = :none) : String
¶
(options : Unicode::CaseOptions = :none) : String
Returns a new String with the first letter converted to uppercase and every
subsequent letter converted to lowercase.
"hEllO".capitalize # => "Hello"
#capitalize(io : IO, options : Unicode::CaseOptions = :none) : Nil
¶
(io : IO, options : Unicode::CaseOptions = :none) : Nil
Writes a capitalized version of self to the given io.
io = IO::Memory.new
"hEllO".capitalize io
io.to_s # => "Hello"
#center(len : Int, char : Char = ' ')
¶
(len : Int, char : Char = ' ')
Adds instances of char to left and right of the string until it is at least size of len.
"Purple".center(8) # => " Purple "
"Purple".center(8, '-') # => "-Purple-"
"Purple".center(9, '-') # => "-Purple--"
"Aubergine".center(8) # => "Aubergine"
#center(io : IO, len : Int, char : Char = ' ') : Nil
¶
(io : IO, len : Int, char : Char = ' ') : Nil
Adds instances of char to left and right of the string until it is at least size of len, then appends the result to the given IO.
io = IO::Memory.new
"Purple".center(io, 9, '-')
io.to_s # => "-Purple--"
#char_at(index : Int
¶
(index : Int
Returns the Char at the given index, or result of running the given block if out of bounds.
Negative indices can be used to start counting from the end of the string.
"hello".char_at(4) { 'x' } # => 'o'
"hello".char_at(5) { 'x' } # => 'x'
"hello".char_at(-1) { 'x' } # => 'o'
"hello".char_at(-5) { 'x' } # => 'h'
"hello".char_at(-6) { 'x' } # => 'x'
#char_at(index : Int) : Char
¶
(index : Int) : Char
Returns the Char at the given index.
Negative indices can be used to start counting from the end of the string.
Raises IndexError if the index is out of bounds.
"hello".char_at(0) # => 'h'
"hello".char_at(1) # => 'e'
"hello".char_at(-1) # => 'o'
"hello".char_at(-2) # => 'l'
"hello".char_at(5) # raises IndexError
#char_index_to_byte_index(index)
¶
(index)
Returns the byte index of a char index, or nil if out of bounds.
It is valid to pass #size to index, and in this case the answer
will be the bytesize of this string.
"hello".char_index_to_byte_index(1) # => 1
"hello".char_index_to_byte_index(5) # => 5
"こんにちは".char_index_to_byte_index(1) # => 3
"こんにちは".char_index_to_byte_index(5) # => 15
#chars
¶
Returns an Array of all characters in the string.
"ab☃".chars # => ['a', 'b', '☃']
#check_no_null_byte(name = nil)
¶
(name = nil)
Raises an ArgumentError if self has null bytes. Returns self otherwise.
This method should sometimes be called before passing a String to a C function.
#chomp(suffix : Char)
¶
(suffix : Char)
Returns a new String with suffix removed from the end of the string.
If suffix is '\n' then "\r\n" is also removed if the string ends with it.
"hello".chomp('o') # => "hell"
"hello".chomp('a') # => "hello"
#chomp(suffix : String)
¶
(suffix : String)
Returns a new String with suffix removed from the end of the string.
If suffix is "\n" then "\r\n" is also removed if the string ends with it.
"hello".chomp("llo") # => "he"
"hello".chomp("ol") # => "hello"
#chomp
¶
Returns a new String with the last carriage return removed (that is, it
will remove \n, \r, and \r\n).
"string\r\n".chomp # => "string"
"string\n\r".chomp # => "string\n"
"string\n".chomp # => "string"
"string".chomp # => "string"
"x".chomp.chomp # => "x"
#codepoint_at(index) : Int32
¶
(index) : Int32
Returns the codepoint of the character at the given index.
Negative indices can be used to start counting from the end of the string.
Raises IndexError if the index is out of bounds.
See also: Char#ord.
"hello".codepoint_at(0) # => 104
"hello".codepoint_at(-1) # => 111
"hello".codepoint_at(5) # raises IndexError
#codepoints
¶
Returns an Array of the codepoints that make the string.
"ab☃".codepoints # => [97, 98, 9731]
See also: Char#ord.
#compare(other : String, case_insensitive = false, options = Unicode::CaseOptions::None)
¶
(other : String, case_insensitive = false, options = Unicode::CaseOptions::None)
Compares this string with other, returning -1, 0 or 1 depending on whether
this string is less, equal or greater than other, optionally in a case_insensitive
manner.
"abcdef".compare("abcde") # => 1
"abcdef".compare("abcdef") # => 0
"abcdef".compare("abcdefg") # => -1
"abcdef".compare("ABCDEF") # => 1
"abcdef".compare("ABCDEF", case_insensitive: true) # => 0
"abcdef".compare("ABCDEG", case_insensitive: true) # => -1
"heIIo".compare("heııo", case_insensitive: true, options: Unicode::CaseOptions::Turkic) # => 0
#count(other : Char)
¶
(other : Char)
Counts the occurrences of other char in this string.
"aabbcc".count('a') # => 2
#count
¶
Yields each char in this string to the block, returns the number of times the block returned a truthy value.
"aabbcc".count &.in?('a', 'b') # => 4
#count(*sets)
¶
(*sets)
Sets should be a list of strings following the rules
described at Char#in_set?. Returns the number of characters
in this string that match the given set.
#delete
¶
Yields each char in this string to the block.
Returns a new String with all characters for which the
block returned a truthy value removed.
"aabbcc".delete &.in?('a', 'b') # => "cc"
#delete(char : Char)
¶
(char : Char)
Returns a new String with all occurrences of char removed.
"aabbcc".delete('b') # => "aacc"
#delete(*sets)
¶
(*sets)
Sets should be a list of strings following the rules
described at Char#in_set?. Returns a new String with
all characters that match the given set removed.
"aabbccdd".delete("a-c") # => "dd"
#delete_at(index : Int) : String
¶
(index : Int) : String
Returns a new string that results from deleting the character at the given index.
"abcde".delete_at(0) # => "bcde"
"abcde".delete_at(2) # => "abde"
"abcde".delete_at(4) # => "abcd"
A negative index counts from the end of the string:
"abcde".delete_at(-2) # => "abce"
If index is outside the bounds of the string, IndexError is raised.
#delete_at(range : Range)
¶
(range : Range)
Returns a new string that results from deleting characters at the given range.
"abcdef".delete_at(1..3) # => "aef"
Negative indices can be used to start counting from the end of the string:
"abcdef".delete_at(-3..-2) # => "abcf"
Raises IndexError if any index is outside the bounds of this string.
#delete_at(index : Int, count : Int) : String
¶
(index : Int, count : Int) : String
Returns a new string that results from deleting count characters starting at index.
"abcdefg".delete_at(1, 3) # => "aefg"
Deleting more characters than those in the string is valid, and just results in deleting up to the last character:
"abcdefg".delete_at(3, 10) # => "abc"
A negative index counts from the end of the string:
"abcdefg".delete_at(-3, 2) # => "abcdg"
If count is negative, ArgumentError is raised.
If index is outside the bounds of the string, ArgumentError
is raised.
However, index can be the position that is exactly the end of the string:
"abcd".delete_at(4, 3) # => "abcd"
#downcase(options : Unicode::CaseOptions = :none) : String
¶
(options : Unicode::CaseOptions = :none) : String
Returns a new String with each uppercase letter replaced with its lowercase counterpart.
"hEllO".downcase # => "hello"
#downcase(io : IO, options : Unicode::CaseOptions = :none) : Nil
¶
(io : IO, options : Unicode::CaseOptions = :none) : Nil
Writes a downcased version of self to the given io.
io = IO::Memory.new
"hEllO".downcase io
io.to_s # => "hello"
#dump(io : IO) : Nil
¶
(io : IO) : Nil
Appends self to the given IO object using character escapes for special characters
and non-ascii characters (unicode codepoints > 128), wrapped in quotes.
#dump : String
¶
: String
Returns a representation of self using character escapes for special characters
and non-ascii characters (unicode codepoints > 128), wrapped in quotes.
"\u{1f48e} - à la carte\n".dump # => %("\\u{1F48E} - \\u00E0 la carte\\n")
#dump_unquoted(io : IO) : Nil
¶
(io : IO) : Nil
Appends self to the given IO object using character escapes for special characters
and non-ascii characters (unicode codepoints > 128), but not wrapped in quotes.
#dump_unquoted : String
¶
: String
Returns a representation of self using character escapes for special characters
and non-ascii characters (unicode codepoints > 128), but not wrapped in quotes.
"\u{1f48e} - à la carte\n".dump_unquoted # => %(\\u{1F48E} - \\u00E0 la carte\\n)
#each_byte
¶
Returns an Iterator over each byte in the string.
bytes = "ab☃".each_byte
bytes.next # => 97
bytes.next # => 98
bytes.next # => 226
bytes.next # => 152
bytes.next # => 131
#each_byte
¶
Yields each byte in the string to the block.
array = [] of UInt8
"ab☃".each_byte do |byte|
array << byte
end
array # => [97, 98, 226, 152, 131]
#each_char
¶
Returns an Iterator over each character in the string.
chars = "ab☃".each_char
chars.next # => 'a'
chars.next # => 'b'
chars.next # => '☃'
#each_char(&) : Nil
¶
(&) : Nil
Yields each character in the string to the block.
array = [] of Char
"ab☃".each_char do |char|
array << char
end
array # => ['a', 'b', '☃']
#each_char_with_index(offset = 0
¶
(offset = 0
Yields each character and its index in the string to the block.
array = [] of Tuple(Char, Int32)
"ab☃".each_char_with_index do |char, index|
array << {char, index}
end
array # => [{'a', 0}, {'b', 1}, {'☃', 2}]
Accepts an optional offset parameter, which tells it to start counting from there.
#each_codepoint
¶
Returns an Iterator for each codepoint.
codepoints = "ab☃".each_codepoint
codepoints.next # => 97
codepoints.next # => 98
codepoints.next # => 9731
See also: Char#ord.
#each_codepoint
¶
Yields each codepoint to the block.
array = [] of Int32
"ab☃".each_codepoint do |codepoint|
array << codepoint
end
array # => [97, 98, 9731]
See also: Char#ord.
#each_line(chomp = true)
¶
(chomp = true)
Returns an Iterator which yields each line of this string (see String#each_line).
#each_line(chomp = true, &block : String -> ) : Nil
¶
(chomp = true, &block : String -> ) : Nil
Splits the string after each newline and yields each line to a block.
haiku = "the first cold shower
even the monkey seems to want
a little coat of straw"
haiku.each_line do |stanza|
puts stanza
end
# output:
# the first cold shower
# even the monkey seems to want
# a little coat of straw
#encode(encoding : String, invalid : Symbol? = nil) : Bytes
¶
(encoding : String, invalid : Symbol? = nil) : Bytes
Returns a slice of bytes containing this string encoded in the given encoding.
The invalid argument can be:
* nil: an exception is raised on invalid byte sequences
* :skip: invalid byte sequences are ignored
"好".encode("GB2312") # => Bytes[186, 195]
"好".bytes # => [229, 165, 189]
#ends_with?(re : Regex) : Bool
¶
(re : Regex) : Bool
Returns true if the regular expression re matches at the end of this string.
"22hello".ends_with?(/[0-9]/) # => false
"22hello".ends_with?(/[a-z]/) # => true
"22h".ends_with?(/[a-z]/) # => true
"22h".ends_with?(/[A-Z]/) # => false
"22h".ends_with?(/[a-z]{2}/) # => false
"22hh".ends_with?(/[a-z]{2}/) # => true
#ends_with?(char : Char) : Bool
¶
(char : Char) : Bool
Returns true if this string ends with the given char.
"hello".ends_with?('o') # => true
"hello".ends_with?('l') # => false
#ends_with?(str : String) : Bool
¶
(str : String) : Bool
Returns true if this string ends with the given str.
"hello".ends_with?("o") # => true
"hello".ends_with?("lo") # => true
"hello".ends_with?("ll") # => false
#gsub(tuple : NamedTuple)
¶
(tuple : NamedTuple)
Returns a String where all chars in the given named tuple are replaced
by the corresponding tuple values.
"hello".gsub({e: 'a', l: 'd'}) # => "haddo"
#gsub(hash : Hash(Char, _))
¶
(hash : Hash(Char, _))
Returns a String where all chars in the given hash are replaced
by the corresponding hash values.
"hello".gsub({'e' => 'a', 'l' => 'd'}) # => "haddo"
#gsub(string : String, replacement)
¶
(string : String, replacement)
Returns a String where all occurrences of the given string are replaced
with the given replacement.
"hello yellow".gsub("ll", "dd") # => "heddo yeddow"
#gsub(pattern : Regex, replacement, backreferences = true)
¶
(pattern : Regex, replacement, backreferences = true)
Returns a String where all occurrences of the given pattern are replaced
with the given replacement.
"hello".gsub(/[aeiou]/, '*') # => "h*ll*"
Within replacement, the special match variable $~ will not refer to the
current match.
If backreferences is true (the default value), replacement can include backreferences:
"hello".gsub(/[aeiou]/, "(\\0)") # => "h(e)ll(o)"
When substitution is performed, any backreferences found in replacement
will be replaced with the contents of the corresponding capture group in
pattern. Backreferences to capture groups that were not present in
pattern or that did not match will be skipped. See Regex for information
about capture groups.
Backreferences are expressed in the form "\\d", where d is a group
number, or "\\k<name>" where name is the name of a named capture group.
A sequence of literal characters resembling a backreference can be
expressed by placing "\\" before the sequence.
"foo".gsub(/o/, "x\\0x") # => "fxoxxox"
"foofoo".gsub(/(?<bar>oo)/, "|\\k<bar>|") # => "f|oo|f|oo|"
"foo".gsub(/o/, "\\\\0") # => "f\\0\\0"
Raises ArgumentError if an incomplete named back-reference is present in
replacement.
Raises IndexError if a named group referenced in replacement is not present
in pattern.
#gsub(pattern : Regex, hash : Hash(String, _) | NamedTuple)
¶
(pattern : Regex, hash : Hash(String, _) | NamedTuple)
Returns a String where all occurrences of the given pattern are replaced
with a hash of replacements. If the hash contains the matched pattern,
the corresponding value is used as a replacement. Otherwise the match is
not included in the returned string.
# "he" and "l" are matched and replaced,
# but "o" is not and so is not included
"hello".gsub(/(he|l|o)/, {"he": "ha", "l": "la"}) # => "halala"
#gsub(char : Char, replacement)
¶
(char : Char, replacement)
Returns a String where all occurrences of the given char are
replaced with the given replacement.
"hello".gsub('l', "lo") # => "heloloo"
"hello world".gsub('o', 'a') # => "hella warld"
#gsub(&block : Char -> _)
¶
(&block : Char -> _)
Returns a String where each character yielded to the given block
is replaced by the block's return value.
"hello".gsub { |char| char + 1 } # => "ifmmp"
"hello".gsub { "hi" } # => "hihihihihi"
#gsub(string : String
¶
(string : String
Returns a String where all occurrences of the given string are replaced
with the block's value.
"hello yellow".gsub("ll") { "dd" } # => "heddo yeddow"
#gsub(pattern : Regex
¶
(pattern : Regex
Returns a String where all occurrences of the given pattern are replaced
by the block value's value.
"hello".gsub(/./) { |s| s[0].ord.to_s + ' ' } # => "104 101 108 108 111 "
#has_back_references?
¶
This returns true if this string has '\\' in it. It might not be a back reference,
but '\\' is probably used for back references, so this check is faster than parsing
the whole thing.
#hexbytes : Bytes
¶
: Bytes
Interprets this string as containing a sequence of hexadecimal values and decodes it as a slice of bytes. Two consecutive bytes in the string represent a byte in the returned slice.
Raises ArgumentError if this string does not denote an hexstring.
"0102031aff".hexbytes # => Bytes[1, 2, 3, 26, 255]
"1".hexbytes # raises ArgumentError
"hello world".hexbytes # raises ArgumentError
#hexbytes? : Bytes?
¶
: Bytes?
Interprets this string as containing a sequence of hexadecimal values and decodes it as a slice of bytes. Two consecutive bytes in the string represent a byte in the returned slice.
Returns nil if this string does not denote an hexstring.
"0102031aff".hexbytes? # => Bytes[1, 2, 3, 26, 255]
"1".hexbytes? # => nil
"hello world".hexbytes? # => nil
#includes?(search : Char | String)
¶
(search : Char | String)
Returns true if the string contains search.
"Team".includes?('i') # => false
"Dysfunctional".includes?("fun") # => true
#index(search : Regex, offset = 0)
¶
(search : Regex, offset = 0)
Returns the index of the first occurrence of search in the string, or nil if not present.
If offset is present, it defines the position to start the search.
"Hello, World".index('o') # => 4
"Hello, World".index('Z') # => nil
"Hello, World".index("o", 5) # => 8
"Hello, World".index("H", 2) # => nil
"Hello, World".index(/[ ]+/) # => 6
"Hello, World".index(/\d+/) # => nil
#index(search : String, offset = 0)
¶
(search : String, offset = 0)
Returns the index of the first occurrence of search in the string, or nil if not present.
If offset is present, it defines the position to start the search.
"Hello, World".index('o') # => 4
"Hello, World".index('Z') # => nil
"Hello, World".index("o", 5) # => 8
"Hello, World".index("H", 2) # => nil
"Hello, World".index(/[ ]+/) # => 6
"Hello, World".index(/\d+/) # => nil
#index(search : Char, offset = 0)
¶
(search : Char, offset = 0)
Returns the index of the first occurrence of search in the string, or nil if not present.
If offset is present, it defines the position to start the search.
"Hello, World".index('o') # => 4
"Hello, World".index('Z') # => nil
"Hello, World".index("o", 5) # => 8
"Hello, World".index("H", 2) # => nil
"Hello, World".index(/[ ]+/) # => 6
"Hello, World".index(/\d+/) # => nil
#insert(index : Int, other : Char)
¶
(index : Int, other : Char)
Returns a new String that results of inserting other in self at index.
Negative indices count from the end of the string, and insert after
the given index.
Raises IndexError if the index is out of bounds.
"abcd".insert(0, 'X') # => "Xabcd"
"abcd".insert(3, 'X') # => "abcXd"
"abcd".insert(4, 'X') # => "abcdX"
"abcd".insert(-3, 'X') # => "abXcd"
"abcd".insert(-1, 'X') # => "abcdX"
"abcd".insert(5, 'X') # raises IndexError
"abcd".insert(-6, 'X') # raises IndexError
#insert(index : Int, other : String)
¶
(index : Int, other : String)
Returns a new String that results of inserting other in self at index.
Negative indices count from the end of the string, and insert after
the given index.
Raises IndexError if the index is out of bounds.
"abcd".insert(0, "FOO") # => "FOOabcd"
"abcd".insert(3, "FOO") # => "abcFOOd"
"abcd".insert(4, "FOO") # => "abcdFOO"
"abcd".insert(-3, "FOO") # => "abFOOcd"
"abcd".insert(-1, "FOO") # => "abcdFOO"
"abcd".insert(5, "FOO") # raises IndexError
"abcd".insert(-6, "FOO") # raises IndexError
#inspect : String
¶
: String
Returns a representation of self using character escapes for special characters and wrapped in quotes.
"\u{1f48e} - à la carte\n".inspect # => %("\u{1F48E} - à la carte\\n")
#inspect(io : IO) : Nil
¶
(io : IO) : Nil
Appends self to the given IO object using character escapes for special characters and wrapped in double quotes.
#inspect_unquoted : String
¶
: String
Returns a representation of self using character escapes for special characters but not wrapped in quotes.
"\u{1f48e} - à la carte\n".inspect_unquoted # => %(\u{1F48E} - à la carte\\n)
#inspect_unquoted(io : IO) : Nil
¶
(io : IO) : Nil
Appends self to the given IO object using character escapes for special characters but not wrapped in quotes.
#lchop : String
¶
: String
Returns a new String with the first char removed from it.
Applying lchop to an empty string returns an empty string.
"hello".lchop # => "ello"
"".lchop # => ""
#lchop(prefix : Char | String) : String
¶
(prefix : Char | String) : String
Returns a new String with prefix removed from the beginning of the string.
"hello".lchop('h') # => "ello"
"hello".lchop('g') # => "hello"
"hello".lchop("hel") # => "lo"
"hello".lchop("eh") # => "hello"
#lchop?(prefix : Char | String) : String?
¶
(prefix : Char | String) : String?
Returns a new String with prefix removed from the beginning of the string if possible, else returns nil.
"hello".lchop?('h') # => "ello"
"hello".lchop?('g') # => nil
"hello".lchop?("hel") # => "lo"
"hello".lchop?("eh") # => nil
#lchop? : String?
¶
: String?
Returns a new String with the first char removed from it if possible, else returns nil.
"hello".lchop? # => "ello"
"".lchop? # => nil
#ljust(len : Int, char : Char = ' ')
¶
(len : Int, char : Char = ' ')
Adds instances of char to right of the string until it is at least size of len.
"Purple".ljust(8) # => "Purple "
"Purple".ljust(8, '-') # => "Purple--"
"Aubergine".ljust(8) # => "Aubergine"
#ljust(io : IO, len : Int, char : Char = ' ') : Nil
¶
(io : IO, len : Int, char : Char = ' ') : Nil
Adds instances of char to right of the string until it is at least size of len, and then appends the result to the given IO.
io = IO::Memory.new
"Purple".ljust(io, 8, '-')
io.to_s # => "Purple--"
#lstrip(&block : Char -> _)
¶
(&block : Char -> _)
Returns a new string where leading characters for which the block returns a truthy value are removed.
"bcadefcba".lstrip { |c| 'a' <= c <= 'c' } # => "defcba"
#lstrip
¶
Returns a new String with leading whitespace removed.
" hello ".lstrip # => "hello "
"\tgoodbye\r\n".lstrip # => "goodbye\r\n"
#lstrip(chars : String)
¶
(chars : String)
Returns a new string where leading occurrences of any char in chars are removed. The chars argument is not a suffix; rather; all combinations of its values are stripped.
"bcadefcba".lstrip("abc") # => "defcba"
#lstrip(char : Char)
¶
(char : Char)
Returns a new string with leading occurrences of char removed.
"aaabcdaaa".lstrip('a') # => "bcdaaa"
#match(regex : Regex, pos = 0) : Regex::MatchData?
¶
(regex : Regex, pos = 0) : Regex::MatchData?
Finds match of regex, starting at pos.
It also updates $~ with the result.
"foo".match(/foo/) # => Regex::MatchData("foo")
$~ # => Regex::MatchData("foo")
"foo".match(/bar/) # => nil
$~ # raises Exception
#matches?(regex : Regex, pos = 0) : Bool
¶
(regex : Regex, pos = 0) : Bool
Finds match of regex like #match, but it returns Bool value.
It neither returns MatchData nor assigns it to the $~ variable.
"foo".matches?(/bar/) # => false
"foo".matches?(/foo/) # => true
# `$~` is not set even if last match succeeds.
$~ # raises Exception
#partition(search : Char | String) : Tuple(String, String, String)
¶
(search : Char | String) : Tuple(String, String, String)
Searches separator or pattern (Regex) in the string, and returns
a Tuple with the part before it, the match, and the part after it.
If it is not found, returns str followed by two empty strings.
"hello".partition("l") # => {"he", "l", "lo"}
"hello".partition("x") # => {"hello", "", ""}
#partition(search : Regex) : Tuple(String, String, String)
¶
(search : Regex) : Tuple(String, String, String)
Searches separator or pattern (Regex) in the string, and returns
a Tuple with the part before it, the match, and the part after it.
If it is not found, returns str followed by two empty strings.
"hello".partition("l") # => {"he", "l", "lo"}
"hello".partition("x") # => {"hello", "", ""}
#presence : self?
¶
: self?
Returns self unless #blank? is true in which case it returns nil.
"a".presence # => "a"
"".presence # => nil
" ".presence # => nil
" a ".presence # => " a "
nil.presence # => nil
config = {"empty" => ""}
config["empty"]?.presence || "default" # => "default"
config["missing"]?.presence || "default" # => "default"
See also: Nil#presence.
#rchop(suffix : Char | String) : String
¶
(suffix : Char | String) : String
Returns a new String with suffix removed from the end of the string.
"string".rchop('g') # => "strin"
"string".rchop('x') # => "string"
"string".rchop("ing") # => "str"
"string".rchop("inx") # => "string"
#rchop : String
¶
: String
Returns a new String with the last character removed.
Applying rchop to an empty string returns an empty string.
"string\r\n".rchop # => "string\r"
"string\n\r".rchop # => "string\n"
"string\n".rchop # => "string"
"string".rchop # => "strin"
"x".rchop.rchop # => ""
#rchop?(suffix : Char | String) : String?
¶
(suffix : Char | String) : String?
Returns a new String with suffix removed from the end of the string if possible, else returns nil.
"string".rchop?('g') # => "strin"
"string".rchop?('x') # => nil
"string".rchop?("ing") # => "str"
"string".rchop?("inx") # => nil
#rchop? : String?
¶
: String?
Returns a new String with the last character removed if possible, else returns nil.
"string\r\n".rchop? # => "string\r"
"string\n\r".rchop? # => "string\n"
"string\n".rchop? # => "string"
"string".rchop? # => "strin"
"".rchop? # => nil
#reverse
¶
Reverses the order of characters in the string.
"Argentina".reverse # => "anitnegrA"
"racecar".reverse # => "racecar"
#rindex(search : Regex, offset = size)
¶
(search : Regex, offset = size)
Returns the index of the last appearance of search in the string, If offset is present, it defines the position to end the search (characters beyond this point are ignored).
"Hello, World".rindex('o') # => 8
"Hello, World".rindex('Z') # => nil
"Hello, World".rindex("o", 5) # => 4
"Hello, World".rindex("W", 2) # => nil
#rindex(search : String, offset = size - search.size)
¶
(search : String, offset = size - search.size)
Returns the index of the last appearance of search in the string, If offset is present, it defines the position to end the search (characters beyond this point are ignored).
"Hello, World".rindex('o') # => 8
"Hello, World".rindex('Z') # => nil
"Hello, World".rindex("o", 5) # => 4
"Hello, World".rindex("W", 2) # => nil
#rindex(search : Char, offset = size - 1)
¶
(search : Char, offset = size - 1)
Returns the index of the last appearance of search in the string, If offset is present, it defines the position to end the search (characters beyond this point are ignored).
"Hello, World".rindex('o') # => 8
"Hello, World".rindex('Z') # => nil
"Hello, World".rindex("o", 5) # => 4
"Hello, World".rindex("W", 2) # => nil
#rjust(len : Int, char : Char = ' ')
¶
(len : Int, char : Char = ' ')
Adds instances of char to left of the string until it is at least size of len.
"Purple".rjust(8) # => " Purple"
"Purple".rjust(8, '-') # => "--Purple"
"Aubergine".rjust(8) # => "Aubergine"
#rjust(io : IO, len : Int, char : Char = ' ') : Nil
¶
(io : IO, len : Int, char : Char = ' ') : Nil
Adds instances of char to left of the string until it is at least size of len, and then appends the result to the given IO.
io = IO::Memory.new
"Purple".rjust(io, 8, '-')
io.to_s # => "--Purple"
#rpartition(search : Regex) : Tuple(String, String, String)
¶
(search : Regex) : Tuple(String, String, String)
Searches separator or pattern (Regex) in the string from the end of the string,
and returns a Tuple with the part before it, the match, and the part after it.
If it is not found, returns two empty strings and str.
"hello".rpartition("l") # => {"hel", "l", "o"}
"hello".rpartition("x") # => {"", "", "hello"}
"hello".rpartition(/.l/) # => {"he", "ll", "o"}
#rpartition(search : Char | String) : Tuple(String, String, String)
¶
(search : Char | String) : Tuple(String, String, String)
Searches separator or pattern (Regex) in the string from the end of the string,
and returns a Tuple with the part before it, the match, and the part after it.
If it is not found, returns two empty strings and str.
"hello".rpartition("l") # => {"hel", "l", "o"}
"hello".rpartition("x") # => {"", "", "hello"}
"hello".rpartition(/.l/) # => {"he", "ll", "o"}
#rstrip(&block : Char -> _)
¶
(&block : Char -> _)
Returns a new string where trailing characters for which the block returns a truthy value are removed.
"bcadefcba".rstrip { |c| 'a' <= c <= 'c' } # => "bcadef"
#rstrip(char : Char)
¶
(char : Char)
Returns a new string with trailing occurrences of char removed.
"aaabcdaaa".rstrip('a') # => "aaabcd"
#rstrip
¶
Returns a new String with trailing whitespace removed.
" hello ".rstrip # => " hello"
"\tgoodbye\r\n".rstrip # => "\tgoodbye"
#rstrip(chars : String)
¶
(chars : String)
Returns a new string where trailing occurrences of any char in chars are removed. The chars argument is not a suffix; rather; all combinations of its values are stripped.
"abcdefcba".rstrip("abc") # => "abcdef"
#scan(pattern : Regex
¶
(pattern : Regex
Searches the string for instances of pattern,
yielding a Regex::MatchData for each match.
#scan(pattern : Regex)
¶
(pattern : Regex)
Searches the string for instances of pattern,
returning an Array of Regex::MatchData for each match.
#scan(pattern : String
¶
(pattern : String
Searches the string for instances of pattern, yielding the matched string for each match.
#scan(pattern : String)
¶
(pattern : String)
Searches the string for instances of pattern, returning an array of the matched string for each match.
#scrub(replacement = Char::REPLACEMENT) : String
¶
(replacement = Char::REPLACEMENT) : String
Returns a String where bytes that are invalid in the UTF-8 encoding are replaced with replacement.
#size
¶
Returns the number of unicode codepoints in this string.
"hello".size # => 5
"你好".size # => 2
#split(limit : Int32? = nil)
¶
(limit : Int32? = nil)
Makes an array by splitting the string on any amount of ASCII whitespace characters (and removing that whitespace).
If limit is present, up to limit new strings will be created, with the entire remainder added to the last string.
old_pond = "
Old pond
a frog leaps in
water's sound
"
old_pond.split # => ["Old", "pond", "a", "frog", "leaps", "in", "water's", "sound"]
old_pond.split(3) # => ["Old", "pond", "a frog leaps in\n water's sound\n"]
#split(separator : Regex, limit = nil, *, remove_empty = false, &block : String -> _)
¶
(separator : Regex, limit = nil, *, remove_empty = false, &block : String -> _)
Makes an Array by splitting the string on separator (and removing instances of separator).
If limit is present, the array will be limited to limit items and the final item will contain the remainder of the string.
If separator is an empty regex (//), the string will be separated into one-character strings.
If remove_empty is true, any empty strings are removed from the result.
long_river_name = "Mississippi"
long_river_name.split(/s+/) # => ["Mi", "i", "ippi"]
long_river_name.split(//) # => ["M", "i", "s", "s", "i", "s", "s", "i", "p", "p", "i"]
#split(separator : String, limit = nil, *, remove_empty = false, &block : String -> _)
¶
(separator : String, limit = nil, *, remove_empty = false, &block : String -> _)
Splits the string after each string separator and yields each part to a block.
If limit is present, the array will be limited to limit items and the final item will contain the remainder of the string.
If separator is an empty string (""), the string will be separated into one-character strings.
If remove_empty is true, any empty strings are removed from the result.
ary = [] of String
long_river_name = "Mississippi"
long_river_name.split("ss") { |s| ary << s }
ary # => ["Mi", "i", "ippi"]
ary.clear
long_river_name.split("i") { |s| ary << s }
ary # => ["M", "ss", "ss", "pp", ""]
ary.clear
long_river_name.split("i", remove_empty: true) { |s| ary << s }
ary # => ["M", "ss", "ss", "pp"]
ary.clear
long_river_name.split("") { |s| ary << s }
ary # => ["M", "i", "s", "s", "i", "s", "s", "i", "p", "p", "i"]
#split(limit : Int32? = nil, &block : String -> _)
¶
(limit : Int32? = nil, &block : String -> _)
Splits the string after any amount of ASCII whitespace characters and yields each non-whitespace part to a block.
If limit is present, up to limit new strings will be created, with the entire remainder added to the last string.
ary = [] of String
old_pond = "
Old pond
a frog leaps in
water's sound
"
old_pond.split { |s| ary << s }
ary # => ["Old", "pond", "a", "frog", "leaps", "in", "water's", "sound"]
ary.clear
old_pond.split(3) { |s| ary << s }
ary # => ["Old", "pond", "a frog leaps in\n water's sound\n"]
#split(separator : Regex, limit = nil, *, remove_empty = false)
¶
(separator : Regex, limit = nil, *, remove_empty = false)
Splits the string after each regex separator and yields each part to a block.
If limit is present, the array will be limited to limit items and the final item will contain the remainder of the string.
If separator is an empty regex (//), the string will be separated into one-character strings.
If remove_empty is true, any empty strings are removed from the result.
ary = [] of String
long_river_name = "Mississippi"
long_river_name.split(/s+/) { |s| ary << s }
ary # => ["Mi", "i", "ippi"]
ary.clear
long_river_name.split(//) { |s| ary << s }
ary # => ["M", "i", "s", "s", "i", "s", "s", "i", "p", "p", "i"]
#split(separator : Char, limit = nil, *, remove_empty = false, &block : String -> _)
¶
(separator : Char, limit = nil, *, remove_empty = false, &block : String -> _)
Splits the string after each character separator and yields each part to a block.
If limit is present, up to limit new strings will be created, with the entire remainder added to the last string.
If remove_empty is true, any empty strings are not yielded.
ary = [] of String
"foo,,bar,baz".split(',') { |string| ary << string }
ary # => ["foo", "", "bar", "baz"]
ary.clear
"foo,,bar,baz".split(',', remove_empty: true) { |string| ary << string }
ary # => ["foo", "bar", "baz"]
ary.clear
"foo,bar,baz".split(',', 2) { |string| ary << string }
ary # => ["foo", "bar,baz"]
#split(separator : String, limit = nil, *, remove_empty = false)
¶
(separator : String, limit = nil, *, remove_empty = false)
Makes an Array by splitting the string on separator (and removing instances of separator).
If limit is present, the array will be limited to limit items and the final item will contain the remainder of the string.
If separator is an empty string (""), the string will be separated into one-character strings.
If remove_empty is true, any empty strings are removed from the result.
long_river_name = "Mississippi"
long_river_name.split("ss") # => ["Mi", "i", "ippi"]
long_river_name.split("i") # => ["M", "ss", "ss", "pp", ""]
long_river_name.split("i", remove_empty: true) # => ["M", "ss", "ss", "pp"]
long_river_name.split("") # => ["M", "i", "s", "s", "i", "s", "s", "i", "p", "p", "i"]
#split(separator : Char, limit = nil, *, remove_empty = false)
¶
(separator : Char, limit = nil, *, remove_empty = false)
Makes an Array by splitting the string on the given character separator
(and removing that character).
If limit is present, up to limit new strings will be created, with the entire remainder added to the last string.
If remove_empty is true, any empty strings are removed from the result.
"foo,,bar,baz".split(',') # => ["foo", "", "bar", "baz"]
"foo,,bar,baz".split(',', remove_empty: true) # => ["foo", "bar", "baz"]
"foo,bar,baz".split(',', 2) # => ["foo", "bar,baz"]
#squeeze(*sets : String)
¶
(*sets : String)
Sets should be a list of strings following the rules
described at Char#in_set?. Returns a new String with all
runs of the same character replaced by one instance, if
they match the given set.
If no set is given, all characters are matched.
"aaabbbcccddd".squeeze("b-d") # => "aaabcd"
"a bbb".squeeze # => "a b"
#squeeze(char : Char)
¶
(char : Char)
Returns a new String, with all runs of char replaced by one instance.
"a bbb".squeeze(' ') # => "a bbb"
#squeeze
¶
Returns a new String, that has all characters removed,
that were the same as the previous one.
"a bbb".squeeze # => "a b"
#squeeze
¶
Yields each char in this string to the block.
Returns a new String, that has all characters removed,
that were the same as the previous one and for which the given
block returned a truthy value.
"aaabbbccc".squeeze &.in?('a', 'b') # => "abccc"
"aaabbbccc".squeeze &.in?('a', 'c') # => "abbbc"
#starts_with?(re : Regex) : Bool
¶
(re : Regex) : Bool
Returns true if the regular expression re matches at the start of this string.
"22hello".starts_with?(/[0-9]/) # => true
"22hello".starts_with?(/[a-z]/) # => false
"h22".starts_with?(/[a-z]/) # => true
"h22".starts_with?(/[A-Z]/) # => false
"h22".starts_with?(/[a-z]{2}/) # => false
"hh22".starts_with?(/[a-z]{2}/) # => true
#starts_with?(char : Char) : Bool
¶
(char : Char) : Bool
Returns true if this string starts with the given char.
"hello".starts_with?('h') # => true
"hello".starts_with?('e') # => false
#starts_with?(str : String) : Bool
¶
(str : String) : Bool
Returns true if this string starts with the given str.
"hello".starts_with?("h") # => true
"hello".starts_with?("he") # => true
"hello".starts_with?("hu") # => false
#strip(&block : Char -> _)
¶
(&block : Char -> _)
Returns a new string where leading and trailing characters for which the block returns a truthy value are removed.
"bcadefcba".strip { |c| 'a' <= c <= 'c' } # => "def"
#strip
¶
Returns a new String with leading and trailing whitespace removed.
" hello ".strip # => "hello"
"\tgoodbye\r\n".strip # => "goodbye"
#strip(chars : String)
¶
(chars : String)
Returns a new string where leading and trailing occurrences of any char in chars are removed. The chars argument is not a prefix or suffix; rather; all combinations of its values are stripped.
"abcdefcba".strip("abc") # => "def"
#strip(char : Char)
¶
(char : Char)
Returns a new string where leading and trailing occurrences of char are removed.
"aaabcdaaa".strip('a') # => "bcd"
#sub(range : Range, replacement : Char)
¶
(range : Range, replacement : Char)
Returns a new String with characters at the given range
replaced by replacement.
"hello".sub(1..2, 'a') # => "halo"
#sub(pattern : Regex, hash : Hash(String, _) | NamedTuple)
¶
(pattern : Regex, hash : Hash(String, _) | NamedTuple)
Returns a String where the first occurrences of the given pattern is replaced
with the matching entry from the hash of replacements. If the first match
is not included in the hash, nothing is replaced.
"hello".sub(/(he|l|o)/, {"he": "ha", "l": "la"}) # => "hallo"
"hello".sub(/(he|l|o)/, {"l": "la"}) # => "hello"
#sub(hash : Hash(Char, _))
¶
(hash : Hash(Char, _))
Returns a String where the first char in the string matching a key in the
given hash is replaced by the corresponding hash value.
"hello".sub({'a' => 'b', 'l' => 'd'}) # => "hedlo"
#sub(char : Char, replacement)
¶
(char : Char, replacement)
Returns a String where the first occurrence of char is replaced by
replacement.
"hello".sub('l', "lo") # => "helolo"
"hello world".sub('o', 'a') # => "hella world"
#sub(index : Int, replacement : String)
¶
(index : Int, replacement : String)
Returns a new String with the character at the given index
replaced by replacement.
"hello".sub(1, "eee") # => "heeello"
#sub(index : Int, replacement : Char)
¶
(index : Int, replacement : Char)
Returns a new String with the character at the given index
replaced by replacement.
"hello".sub(1, 'a') # => "hallo"
#sub(&block : Char -> _)
¶
(&block : Char -> _)
Returns a new String where the first character is yielded to the given
block and replaced by its return value.
"hello".sub { |char| char + 1 } # => "iello"
"hello".sub { "hi" } # => "hiello"
#sub(pattern : Regex, replacement, backreferences = true)
¶
(pattern : Regex, replacement, backreferences = true)
Returns a String where the first occurrence of pattern is replaced by
replacement
"hello".sub(/[aeiou]/, "*") # => "h*llo"
Within replacement, the special match variable $~ will not refer to the
current match.
If backreferences is true (the default value), replacement can include backreferences:
"hello".sub(/[aeiou]/, "(\\0)") # => "h(e)llo"
When substitution is performed, any backreferences found in replacement
will be replaced with the contents of the corresponding capture group in
pattern. Backreferences to capture groups that were not present in
pattern or that did not match will be skipped. See Regex for information
about capture groups.
Backreferences are expressed in the form "\\d", where d is a group
number, or "\\k<name>" where name is the name of a named capture group.
A sequence of literal characters resembling a backreference can be
expressed by placing "\\" before the sequence.
"foo".sub(/o/, "x\\0x") # => "fxoxo"
"foofoo".sub(/(?<bar>oo)/, "|\\k<bar>|") # => "f|oo|foo"
"foo".sub(/o/, "\\\\0") # => "f\\0o"
Raises ArgumentError if an incomplete named back-reference is present in
replacement.
Raises IndexError if a named group referenced in replacement is not present
in pattern.
#sub(range : Range, replacement : String)
¶
(range : Range, replacement : String)
Returns a new String with characters at the given range
replaced by replacement.
"hello".sub(1..2, "eee") # => "heeelo"
#sub(pattern : Regex
¶
(pattern : Regex
Returns a String where the first occurrence of pattern is replaced by
the block's return value.
"hello".sub(/./) { |s| s[0].ord.to_s + ' ' } # => "104 ello"
#sub(string : String
¶
(string : String
Returns a String where the first occurrences of the given string is replaced
with the block's value.
"hello yellow".sub("ll") { "dd" } # => "heddo yellow"
#sub(string : String, replacement)
¶
(string : String, replacement)
Returns a String where the first occurrences of the given string is replaced
with the given replacement.
"hello yellow".sub("ll", "dd") # => "heddo yellow"
#succ
¶
Returns the successor of the string. The successor is calculated by incrementing characters starting from the rightmost alphanumeric (or the rightmost character if there are no alphanumerics) in the string. Incrementing a digit always results in another digit, and incrementing a letter results in another letter of the same case.
If the increment generates a "carry", the character to the left of it is incremented. This process repeats until there is no carry, adding an additional character if necessary.
"abcd".succ # => "abce"
"THX1138".succ # => "THX1139"
"((koala))".succ # => "((koalb))"
"1999zzz".succ # => "2000aaa"
"ZZZ9999".succ # => "AAAA0000"
"***".succ # => "**+"
#titleize(io : IO, options : Unicode::CaseOptions = :none) : Nil
¶
(io : IO, options : Unicode::CaseOptions = :none) : Nil
Writes a titleized version of self to the given io.
io = IO::Memory.new
"x-men: the last stand".titleize io
io.to_s # => "X-men: The Last Stand"
#titleize(options : Unicode::CaseOptions = :none) : String
¶
(options : Unicode::CaseOptions = :none) : String
Returns a new String with the first letter after any space converted to uppercase and every
other letter converted to lowercase.
"hEllO tAb\tworld".titleize # => "Hello Tab\tWorld"
" spaces before".titleize # => " Spaces Before"
"x-men: the last stand".titleize # => "X-men: The Last Stand"
#to_big_d
¶
Converts self to BigDecimal.
require "big"
"1212341515125412412412421".to_big_d
#to_big_i(base = 10) : BigInt
¶
(base = 10) : BigInt
Returns a BigInt from this string, in the given base.
Raises ArgumentError if this string doesn't denote a valid integer.
require "big"
"3a060dbf8d1a5ac3e67bc8f18843fc48".to_big_i(16)
#to_f(whitespace : Bool = true, strict : Bool = true)
¶
(whitespace : Bool = true, strict : Bool = true)
Returns the result of interpreting characters in this string as a floating point number (Float64).
This method raises an exception if the string is not a valid float representation
or exceeds the range of the data type. Values representing infinity or NaN
are considered valid.
Options:
* whitespace: if true, leading and trailing whitespaces are allowed
* strict: if true, extraneous characters past the end of the number are disallowed
"123.45e1".to_f # => 1234.5
"45.67 degrees".to_f # raises ArgumentError
"thx1138".to_f(strict: false) # raises ArgumentError
" 1.2".to_f(whitespace: false) # raises ArgumentError
"1.2foo".to_f(strict: false) # => 1.2
#to_f32(whitespace : Bool = true, strict : Bool = true)
¶
(whitespace : Bool = true, strict : Bool = true)
Same as #to_f but returns a Float32.
#to_f32?(whitespace : Bool = true, strict : Bool = true)
¶
(whitespace : Bool = true, strict : Bool = true)
Same as #to_f? but returns a Float32.
#to_f64(whitespace : Bool = true, strict : Bool = true)
¶
(whitespace : Bool = true, strict : Bool = true)
Returns the result of interpreting characters in this string as a floating point number (Float64).
This method raises an exception if the string is not a valid float representation
or exceeds the range of the data type. Values representing infinity or NaN
are considered valid.
Options:
* whitespace: if true, leading and trailing whitespaces are allowed
* strict: if true, extraneous characters past the end of the number are disallowed
"123.45e1".to_f # => 1234.5
"45.67 degrees".to_f # raises ArgumentError
"thx1138".to_f(strict: false) # raises ArgumentError
" 1.2".to_f(whitespace: false) # raises ArgumentError
"1.2foo".to_f(strict: false) # => 1.2
#to_f64?(whitespace : Bool = true, strict : Bool = true)
¶
(whitespace : Bool = true, strict : Bool = true)
Returns the result of interpreting characters in this string as a floating point number (Float64).
This method returns nil if the string is not a valid float representation
or exceeds the range of the data type. Values representing infinity or NaN
are considered valid.
Options:
* whitespace: if true, leading and trailing whitespaces are allowed
* strict: if true, extraneous characters past the end of the number are disallowed
"123.45e1".to_f? # => 1234.5
"45.67 degrees".to_f? # => nil
"thx1138".to_f? # => nil
" 1.2".to_f?(whitespace: false) # => nil
"1.2foo".to_f?(strict: false) # => 1.2
#to_f?(whitespace : Bool = true, strict : Bool = true)
¶
(whitespace : Bool = true, strict : Bool = true)
Returns the result of interpreting characters in this string as a floating point number (Float64).
This method returns nil if the string is not a valid float representation
or exceeds the range of the data type. Values representing infinity or NaN
are considered valid.
Options:
* whitespace: if true, leading and trailing whitespaces are allowed
* strict: if true, extraneous characters past the end of the number are disallowed
"123.45e1".to_f? # => 1234.5
"45.67 degrees".to_f? # => nil
"thx1138".to_f? # => nil
" 1.2".to_f?(whitespace: false) # => nil
"1.2foo".to_f?(strict: false) # => 1.2
#to_i(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
¶
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
Same as #to_i, but returns the block's value if there is not a valid number at the start
of this string, or if the resulting integer doesn't fit an Int32.
"12345".to_i { 0 } # => 12345
"hello".to_i { 0 } # => 0
#to_i(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false)
¶
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false)
Returns the result of interpreting leading characters in this string as an integer base base (between 2 and 36).
If there is not a valid number at the start of this string,
or if the resulting integer doesn't fit an Int32, an ArgumentError is raised.
Options:
* whitespace: if true, leading and trailing whitespaces are allowed
* underscore: if true, underscores in numbers are allowed
* prefix: if true, the prefixes "0x", "0o" and "0b" override the base
* strict: if true, extraneous characters past the end of the number are disallowed
* leading_zero_is_octal: if true, then a number prefixed with "0" will be treated as an octal
"12345".to_i # => 12345
"0a".to_i # raises ArgumentError
"hello".to_i # raises ArgumentError
"0a".to_i(16) # => 10
"1100101".to_i(2) # => 101
"1100101".to_i(8) # => 294977
"1100101".to_i(10) # => 1100101
"1100101".to_i(base: 16) # => 17826049
"12_345".to_i # raises ArgumentError
"12_345".to_i(underscore: true) # => 12345
" 12345 ".to_i # => 12345
" 12345 ".to_i(whitespace: false) # raises ArgumentError
"0x123abc".to_i # raises ArgumentError
"0x123abc".to_i(prefix: true) # => 1194684
"99 red balloons".to_i # raises ArgumentError
"99 red balloons".to_i(strict: false) # => 99
"0755".to_i # => 755
"0755".to_i(leading_zero_is_octal: true) # => 493
#to_i16(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int16
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int16
#to_i16(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
#to_i16?(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int16?
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int16?
#to_i32(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
¶
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
Same as #to_i.
#to_i32(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int32
¶
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int32
Same as #to_i.
#to_i32?(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int32?
¶
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int32?
Same as #to_i.
#to_i64(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
#to_i64(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int64
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int64
#to_i64?(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int64?
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int64?
#to_i8(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int8
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int8
#to_i8(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
#to_i8?(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int8?
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : Int8?
#to_i?(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false)
¶
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false)
Same as #to_i, but returns nil if there is not a valid number at the start
of this string, or if the resulting integer doesn't fit an Int32.
"12345".to_i? # => 12345
"99 red balloons".to_i? # => nil
"0a".to_i?(strict: false) # => 0
"hello".to_i? # => nil
#to_slice : Bytes
¶
: Bytes
Returns the underlying bytes of this String.
The returned slice is read-only.
#to_u16(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt16
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt16
#to_u16(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
#to_u16?(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt16?
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt16?
#to_u32(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt32
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt32
#to_u32(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
#to_u32?(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt32?
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt32?
#to_u64(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt64
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt64
#to_u64(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
#to_u64?(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt64?
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt64?
#to_u8(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt8
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt8
#to_u8(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false
#to_u8?(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt8?
¶
View source
(base : Int = 10, whitespace : Bool = true, underscore : Bool = false, prefix : Bool = false, strict : Bool = true, leading_zero_is_octal : Bool = false) : UInt8?
#to_utf16 : Slice(UInt16)
¶
: Slice(UInt16)
Returns the UTF-16 encoding of the given string.
Invalid chars (in the range U+D800..U+DFFF) are encoded with the
unicode replacement char value 0xfffd.
The byte following the end of this slice (but not included in it) is defined
to be zero. This allows passing the result of this function into C functions
that expect a null-terminated UInt16*.
"hi 𐂥".to_utf16 # => Slice[104_u16, 105_u16, 32_u16, 55296_u16, 56485_u16]
#tr(from : String, to : String)
¶
(from : String, to : String)
Returns a new string _tr_anslating characters using from and to as a
map. If to is shorter than from, the last character in to is used for
the rest. If to is empty, this acts like String#delete.
"aabbcc".tr("abc", "xyz") # => "xxyyzz"
"aabbcc".tr("abc", "x") # => "xxxxxx"
"aabbcc".tr("a", "xyz") # => "xxbbcc"
#underscore(io : IO, options : Unicode::CaseOptions = :none) : Nil
¶
(io : IO, options : Unicode::CaseOptions = :none) : Nil
Writes an underscored version of self to the given io.
io = IO::Memory.new
"DoesWhatItSaysOnTheTin".underscore io
io.to_s # => "does_what_it_says_on_the_tin"
#underscore(options : Unicode::CaseOptions = :none) : String
¶
(options : Unicode::CaseOptions = :none) : String
Converts camelcase boundaries to underscores.
"DoesWhatItSaysOnTheTin".underscore # => "does_what_it_says_on_the_tin"
"PartyInTheUSA".underscore # => "party_in_the_usa"
"HTTP_CLIENT".underscore # => "http_client"
"3.14IsPi".underscore # => "3.14_is_pi"
"InterestingImage".underscore(Unicode::CaseOptions::Turkic) # => "ınteresting_ımage"
#unsafe_byte_at(index : Int) : UInt8
¶
(index : Int) : UInt8
Returns the byte at the given index without bounds checking.
#unsafe_byte_slice(byte_offset, count) : Slice
¶
(byte_offset, count) : Slice
Returns count of underlying bytes of this String starting at given byte_offset.
The returned slice is read-only.
#unsafe_byte_slice(byte_offset) : Slice
¶
(byte_offset) : Slice
Returns the underlying bytes of this String starting at given byte_offset.
The returned slice is read-only.
#upcase(io : IO, options : Unicode::CaseOptions = :none) : Nil
¶
(io : IO, options : Unicode::CaseOptions = :none) : Nil
Writes a upcased version of self to the given io.
io = IO::Memory.new
"hEllO".upcase io
io.to_s # => "HELLO"
#upcase(options : Unicode::CaseOptions = :none) : String
¶
(options : Unicode::CaseOptions = :none) : String
Returns a new String with each lowercase letter replaced with its uppercase counterpart.
"hEllO".upcase # => "HELLO"
#valid_encoding?
¶
Returns true if this String is encoded correctly
according to the UTF-8 encoding.