module Enumerable(T)
¶
The Enumerable
mixin provides collection classes with several traversal, searching,
filtering and querying methods.
Including types must provide an each
method, which yields successive members
of the collection.
For example:
class Three
include Enumerable(Int32)
def each
yield 1
yield 2
yield 3
end
end
three = Three.new
three.to_a # => [1, 2, 3]
three.select &.odd? # => [1, 3]
three.all? { |x| x < 10 } # => true
Note that most search and filter methods traverse an Enumerable eagerly,
producing an Array
as the result. For a lazy alternative refer to
the Iterator
and Iterable
modules.
Direct including types
Char::Reader
Crystal::Matches
Dir
Hash(K, V)
HTTP::Cookies
HTTP::Headers
Indexable(T)
Iterator(T)
LLVM::BasicBlockCollection
LLVM::InstructionCollection
Log::Metadata
Range(B, E)
Set(T)
URI::Params
XML::Attributes
XML::NodeSet
YAML::Nodes::Sequence
Methods¶
#all?
¶
Returns true
if the passed block returns a value other than false
or nil
for all elements of the collection.
["ant", "bear", "cat"].all? { |word| word.size >= 3 } # => true
["ant", "bear", "cat"].all? { |word| word.size >= 4 } # => false
#all?(pattern)
¶
(pattern)
Returns true
if pattern === element
for all elements in
this enumerable.
[2, 3, 4].all?(1..5) # => true
[2, 3, 4].all?(Int32) # => true
[2, "a", 3].all?(String) # => false
%w[foo bar baz].all?(/o|a/) # => true
#all?
¶
Returns true
if none of the elements of the collection is false
or nil
.
[nil, true, 99].all? # => false
[15].all? # => true
#any?
¶
Returns true
if the passed block returns a value other than false
or nil
for at least one element of the collection.
["ant", "bear", "cat"].any? { |word| word.size >= 4 } # => true
["ant", "bear", "cat"].any? { |word| word.size > 4 } # => false
#any?(pattern)
¶
(pattern)
Returns true
if pattern === element
for at least one
element in this enumerable.
[2, 3, 4].any?(1..3) # => true
[2, 3, 4].any?(5..10) # => false
[2, "a", 3].any?(String) # => true
%w[foo bar baz].any?(/a/) # => true
#any?
¶
Returns true
if at least one of the collection members is not false
or nil
.
[nil, true, 99].any? # => true
[nil, false].any? # => false
#chunks(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Enumerates over the items, chunking them together based on the return value of the block.
Consecutive elements which return the same block value are chunked together.
For example, consecutive even numbers and odd numbers can be chunked as follows.
ary = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunks { |n| n.even? }
ary # => [{false, [3, 1]}, {true, [4]}, {false, [1, 5, 9]}, {true, [2, 6]}, {false, [5, 3, 5]}]
The following key values have special meaning:
Enumerable::Chunk::Drop
specifies that the elements should be droppedEnumerable::Chunk::Alone
specifies that the element should be chunked by itself
See also: Iterator#chunk
.
#compact_map
¶
Returns an Array
with the results of running the block against each element
of the collection, removing nil
values.
["Alice", "Bob"].map { |name| name.match(/^A./) } # => [Regex::MatchData("Al"), nil]
["Alice", "Bob"].compact_map { |name| name.match(/^A./) } # => [Regex::MatchData("Al")]
#count
¶
Returns the number of elements in the collection for which
the passed block returns true
.
[1, 2, 3, 4].count { |i| i % 2 == 0 } # => 2
#count(item)
¶
(item)
Returns the number of times that the passed item is present in the collection.
[1, 2, 3, 4].count(3) # => 1
#each_cons(count : Int, reuse = false
¶
(count : Int, reuse = false
Iterates over the collection yielding chunks of size count, but advancing one by one.
[1, 2, 3, 4, 5].each_cons(2) do |cons|
puts cons
end
Prints:
[1, 2]
[2, 3]
[3, 4]
[4, 5]
By default, a new array is created and yielded for each consecutive slice of elements.
* If reuse is given, the array can be reused
* If reuse is true
, the method will create a new array and reuse it.
* If reuse is an instance of Array
, Deque
or a similar collection type (implementing #<<
, #shift
and #size
) it will be used.
* If reuse is falsey, the array will not be reused.
This can be used to prevent many memory allocations when each slice of interest is to be used in a read-only fashion.
Chunks of two items can be iterated using #each_cons_pair
, an optimized
implementation for the special case of size == 2
which avoids heap
allocations.
#each_cons_pair(& : T, T -> _) : Nil
¶
(& : T, T -> _) : Nil
Iterates over the collection yielding pairs of adjacent items, but advancing one by one.
[1, 2, 3, 4, 5].each_cons_pair do |a, b|
puts "#{a}, #{b}"
end
Prints:
1, 2
2, 3
3, 4
4, 5
Chunks of more than two items can be iterated using #each_cons
.
This method is just an optimized implementation for the special case of
size == 2
to avoid heap allocations.
#each_slice(count : Int, reuse = false
¶
(count : Int, reuse = false
Iterates over the collection in slices of size count, and runs the block for each of those.
[1, 2, 3, 4, 5].each_slice(2) do |slice|
puts slice
end
Prints:
[1, 2]
[3, 4]
[5]
Note that the last one can be smaller.
By default, a new array is created and yielded for each slice.
* If reuse is given, the array can be reused
* If reuse is an Array
, this array will be reused
* If reuse is truthy, the method will create a new array and reuse it.
This can be used to prevent many memory allocations when each slice of interest is to be used in a read-only fashion.
#each_with_index(offset = 0
¶
(offset = 0
Iterates over the collection, yielding both the elements and their index.
["Alice", "Bob"].each_with_index do |user, i|
puts "User ##{i}: #{user}"
end
Prints:
User # 0: Alice
User # 1: Bob
Accepts an optional offset parameter, which tells it to start counting from there. So, a more human friendly version of the previous snippet would be:
["Alice", "Bob"].each_with_index(1) do |user, i|
puts "User ##{i}: #{user}"
end
Which would print:
User # 1: Alice
User # 2: Bob
#each_with_object
¶
Iterates over the collection, passing each element and the initial object obj. Returns that object.
hash = ["Alice", "Bob"].each_with_object({} of String => Int32) do |user, sizes|
sizes[user] = user.size
end
hash # => {"Alice" => 5, "Bob" => 3}
#empty?
¶
Returns true
if self
is empty, false
otherwise.
([] of Int32).empty? # => true
([1]).empty? # => false
#find(if_none = nil
¶
(if_none = nil
Returns the first element in the collection for which the passed block is true
.
Accepts an optional parameter if_none, to set what gets returned if
no element is found (defaults to nil
).
[1, 2, 3, 4].find { |i| i > 2 } # => 3
[1, 2, 3, 4].find { |i| i > 8 } # => nil
[1, 2, 3, 4].find(-1) { |i| i > 8 } # => -1
#first
¶
Returns the first element in the collection, If the collection is empty, calls the block and returns its value.
([1, 2, 3]).first { 4 } # => 1
([] of Int32).first { 4 } # => 4
#first(count : Int)
¶
(count : Int)
Returns an Array
with the first count elements in the collection.
If count is bigger than the number of elements in the collection, returns as many as possible. This include the case of calling it over an empty collection, in which case it returns an empty array.
#first
¶
Returns the first element in the collection. Raises Enumerable::EmptyError
if the collection is empty.
([1, 2, 3]).first # => 1
([] of Int32).first # raises Enumerable::EmptyError
#first?
¶
Returns the first element in the collection.
When the collection is empty, returns nil
.
([1, 2, 3]).first? # => 1
([] of Int32).first? # => nil
#flat_map(&block : T -> _)
¶
(&block : T -> _)
Returns a new array with the concatenated results of running the block
once for every element in the collection.
Only Array
and Iterator
results are concatenated; every other value is
directly appended to the new array.
array = ["Alice", "Bob"].flat_map do |user|
user.chars
end
array # => ['A', 'l', 'i', 'c', 'e', 'B', 'o', 'b']
#group_by(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Returns a Hash
whose keys are each different value that the passed block
returned when run for each element in the collection, and which values are
an Array
of the elements for which the block returned that value.
["Alice", "Bob", "Ary"].group_by { |name| name.size } # => {5 => ["Alice"], 3 => ["Bob", "Ary"]}
#in_groups_of(size : Int, filled_up_with : U = nil) forall U
¶
(size : Int, filled_up_with : U = nil) forall U
Returns an Array
with chunks in the given size, eventually filled up
with given value or nil
.
[1, 2, 3].in_groups_of(2, 0) # => [[1, 2], [3, 0]]
[1, 2, 3].in_groups_of(2) # => [[1, 2], [3, nil]]
#in_groups_of(size : Int, filled_up_with : U = nil, reuse = false, &) forall U
¶
(size : Int, filled_up_with : U = nil, reuse = false, &) forall U
Yields a block with the chunks in the given size.
[1, 2, 4].in_groups_of(2, 0) { |e| p e.sum }
# => 3
# => 4
By default, a new array is created and yielded for each group.
* If reuse is given, the array can be reused
* If reuse is an Array
, this array will be reused
* If reuse is truthy, the method will create a new array and reuse it.
This can be used to prevent many memory allocations when each slice of interest is to be used in a read-only fashion.
#includes?(obj)
¶
(obj)
Returns true
if the collection contains obj, false
otherwise.
[1, 2, 3].includes?(2) # => true
[1, 2, 3].includes?(5) # => false
#index
¶
Returns the index of the first element for which the passed block returns true
.
["Alice", "Bob"].index { |name| name.size < 4 } # => 1 (Bob's index)
Returns nil
if the block didn't return true
for any element.
#index(obj)
¶
(obj)
Returns the index of the object obj in the collection.
["Alice", "Bob"].index("Alice") # => 0
Returns nil
if obj is not in the collection.
#index_by(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Converts an Enumerable
to a Hash
by using the value returned by the block
as the hash key.
Be aware, if two elements return the same value as a key one will override
the other. If you want to keep all values, then you should probably use
group_by
instead.
["Anna", "Ary", "Alice"].index_by { |e| e.size }
# => {4 => "Anna", 3 => "Ary", 5 => "Alice"}
["Anna", "Ary", "Alice", "Bob"].index_by { |e| e.size }
# => {4 => "Anna", 3 => "Bob", 5 => "Alice"}
#join(separator = "", & : T -> )
¶
(separator = "", & : T -> )
Returns a String
created by concatenating the results of passing the elements
in the collection to the passed block, separated by separator (defaults to none).
[1, 2, 3, 4, 5].join(", ") { |i| -i } # => "-1, -2, -3, -4, -5"
#join(separator, io : IO
¶
(separator, io : IO
Prints to io the concatenation of the elements, with the possibility of controlling how the printing is done via a block.
[1, 2, 3, 4, 5].join(STDOUT, ", ") { |i, io| io << "(#{i})" }
Prints:
(1), (2), (3), (4), (5)
#join(io : IO, separator = "", & : T, IO -> )
¶
(io : IO, separator = "", & : T, IO -> )
Prints to io the concatenation of the elements, with the possibility of controlling how the printing is done via a block.
[1, 2, 3, 4, 5].join(STDOUT, ", ") { |i, io| io << "(#{i})" }
Prints:
(1), (2), (3), (4), (5)
#join(separator = "")
¶
(separator = "")
Returns a String
created by concatenating the elements in the collection,
separated by separator (defaults to none).
[1, 2, 3, 4, 5].join(", ") # => "1, 2, 3, 4, 5"
#join(separator, io : IO)
¶
(separator, io : IO)
Prints to io all the elements in the collection, separated by separator.
[1, 2, 3, 4, 5].join(STDOUT, ", ")
Prints:
1, 2, 3, 4, 5
#join(io : IO, separator = "")
¶
(io : IO, separator = "")
Prints to io all the elements in the collection, separated by separator.
[1, 2, 3, 4, 5].join(STDOUT, ", ")
Prints:
1, 2, 3, 4, 5
#map(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Returns an Array
with the results of running the block against each element of the collection.
[1, 2, 3].map { |i| i * 10 } # => [10, 20, 30]
#map_with_index(offset = 0, &block : T, Int32 -> U) forall U
¶
(offset = 0, &block : T, Int32 -> U) forall U
Like map
, but the block gets passed both the element and its index.
["Alice", "Bob"].map_with_index { |name, i| "User ##{i}: #{name}" }
# => ["User #0: Alice", "User #1: Bob"]
Accepts an optional offset parameter, which tells it to start counting from there.
#max
¶
Returns the element with the maximum value in the collection.
It compares using >
so it will work for any type that supports that method.
[1, 2, 3].max # => 3
["Alice", "Bob"].max # => "Bob"
Raises Enumerable::EmptyError
if the collection is empty.
#max_by(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Returns the element for which the passed block returns with the maximum value.
It compares using >
so the block must return a type that supports that method
["Alice", "Bob"].max_by { |name| name.size } # => "Alice"
Raises Enumerable::EmptyError
if the collection is empty.
#max_by?(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Like max_by
but returns nil
if the collection is empty.
#max_of(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Like max_by
but instead of the element, returns the value returned by the block.
["Alice", "Bob"].max_of { |name| name.size } # => 5 (Alice's size)
#max_of?(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Like max_of
but returns nil
if the collection is empty.
#min
¶
Returns the element with the minimum value in the collection.
It compares using <
so it will work for any type that supports that method.
[1, 2, 3].min # => 1
["Alice", "Bob"].min # => "Alice"
Raises Enumerable::EmptyError
if the collection is empty.
#min_by(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Returns the element for which the passed block returns with the minimum value.
It compares using <
so the block must return a type that supports that method
["Alice", "Bob"].min_by { |name| name.size } # => "Bob"
Raises Enumerable::EmptyError
if the collection is empty.
#min_by?(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Like min_by
but returns nil
if the collection is empty.
#min_of(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Like min_by
but instead of the element, returns the value returned by the block.
["Alice", "Bob"].min_of { |name| name.size } # => 3 (Bob's size)
#min_of?(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Like min_of
but returns nil
if the collection is empty.
#minmax
¶
Returns a Tuple
with both the minimum and maximum value.
[1, 2, 3].minmax # => {1, 3}
Raises Enumerable::EmptyError
if the collection is empty.
#minmax_by(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Returns a Tuple
with both the minimum and maximum values according to the passed block.
["Alice", "Bob", "Carl"].minmax_by { |name| name.size } # => {"Bob", "Alice"}
Raises Enumerable::EmptyError
if the collection is empty.
#minmax_by?(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Like minmax_by
but returns {nil, nil}
if the collection is empty.
#minmax_of(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Returns a Tuple
with both the minimum and maximum value
the block returns when passed the elements in the collection.
["Alice", "Bob", "Carl"].minmax_of { |name| name.size } # => {3, 5}
Raises Enumerable::EmptyError
if the collection is empty.
#minmax_of?(&block : T -> U) forall U
¶
(&block : T -> U) forall U
Like minmax_of
but returns {nil, nil}
if the collection is empty.
#none?(pattern)
¶
(pattern)
Returns true
if pattern === element
for no element in
this enumerable.
[2, 3, 4].none?(5..7) # => true
[2, "a", 3].none?(String) # => false
%w[foo bar baz].none?(/e/) # => true
#none?
¶
Returns true
if the passed block returns true
for none of the elements of the collection.
[1, 2, 3].none? { |i| i > 5 } # => true
It's the opposite of all?
.
#none?
¶
Returns true
if all of the elements of the collection are false
or nil
.
[nil, false].none? # => true
[nil, false, true].none? # => false
It's the opposite of all?
.
#one?
¶
Returns true
if the passed block returns true
for exactly one of the elements of the collection.
[1, 2, 3].one? { |i| i > 2 } # => true
[1, 2, 3].one? { |i| i > 1 } # => false
#one?(pattern)
¶
(pattern)
Returns true
if pattern === element
for just one element
in this enumerable.
[1, 10, 100].one?(7..14) # => true
[2, "a", 3].one?(Int32) # => false
%w[foo bar baz].one?(/oo/) # => true
#one?
¶
Returns true
if only one element in this enumerable
is truthy.
[1, false, false].one? # => true
[1, false, 3].one? # => false
[1].one? # => true
[false].one? # => false
#partition
¶
Returns a Tuple
with two arrays. The first one contains the elements
in the collection for which the passed block returned true
,
and the second one those for which it returned false
.
[1, 2, 3, 4, 5, 6].partition { |i| i % 2 == 0 } # => {[2, 4, 6], [1, 3, 5]}
#product(initial : Number)
¶
(initial : Number)
Multiplies initial and all the elements in the collection together. The type of initial will be the type of the product, so use this if (for instance) you need to specify a large enough type to avoid overflow.
Expects all element types to respond to #*
method.
[1, 2, 3, 4, 5, 6].product(7) # => 5040
If the collection is empty, returns initial.
([] of Int32).product(7) # => 7
#product
¶
Multiplies all the elements in the collection together.
Expects all element types to respond to #*
method.
[1, 2, 3, 4, 5, 6].product # => 720
This method calls .multiplicative_identity
on the element type to determine the
type of the sum value.
If the collection is empty, returns multiplicative_identity
.
([] of Int32).product # => 1
#product(initial : Number
¶
(initial : Number
Multiplies initial and all results of the passed block for each element in the collection.
["Alice", "Bob"].product(2) { |name| name.size } # => 30 (2 * 5 * 3)
Expects all types returned from the block to respond to #*
method.
If the collection is empty, returns 1
.
([] of String).product(1) { |name| name.size } # => 1
#product
¶
Multiplies all results of the passed block for each element in the collection.
["Alice", "Bob"].product { |name| name.size } # => 15 (5 * 3)
Expects all types returned from the block to respond to #*
method.
This method calls .multiplicative_identity
on the element type to determine the
type of the sum value.
If the collection is empty, returns multiplicative_identity
.
([] of Int32).product { |x| x + 1 } # => 1
#reduce
¶
Just like the other variant, but you can set the initial value of the accumulator.
[1, 2, 3, 4, 5].reduce(10) { |acc, i| acc + i } # => 25
[1, 2, 3].reduce([] of Int32) { |memo, i| memo.unshift(i) } # => [3, 2, 1]
#reduce
¶
Combines all elements in the collection by applying a binary operation, specified by a block, so as to reduce them to a single value.
For each element in the collection the block is passed an accumulator value (memo) and the element. The result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method. The initial value for the accumulator is the first element in the collection.
[1, 2, 3, 4, 5].reduce { |acc, i| acc + i } # => 15
#reduce?
¶
Similar to reduce
, but instead of raising when the input is empty,
return nil
([] of Int32).reduce? { |acc, i| acc + i } # => nil
#reject(pattern)
¶
(pattern)
Returns an Array
with all the elements in the collection for which
pattern === element
is false.
[1, 3, 2, 5, 4, 6].reject(3..5) # => [1, 2, 6]
#reject(type : U.class) forall U
¶
(type : U.class) forall U
Returns an Array
with all the elements in the collection
that are not of the given type.
ints = [1, true, 3, false].reject(Bool)
ints # => [1, 3]
typeof(ints) # => Array(Int32)
#reject(&block : T -> )
¶
(&block : T -> )
Returns an Array
with all the elements in the collection for which
the passed block returns false
.
[1, 2, 3, 4, 5, 6].reject { |i| i % 2 == 0 } # => [1, 3, 5]
#sample(n : Int, random = Random::DEFAULT)
¶
(n : Int, random = Random::DEFAULT)
Returns an Array
of n random elements from self
, using the given
random number generator. All elements have equal probability of being
drawn. Sampling is done without replacement; if n is larger than the size
of this collection, the returned Array
has the same size as self
.
Raises ArgumentError
if n is negative.
[1, 2, 3, 4, 5].sample(2) # => [3, 5]
{1, 2, 3, 4, 5}.sample(2) # => [3, 4]
{1, 2, 3, 4, 5}.sample(2, Random.new(1)) # => [1, 5]
#sample(random = Random::DEFAULT)
¶
(random = Random::DEFAULT)
Returns a random element from self
, using the given random number
generator. All elements have equal probability of being drawn.
Raises IndexError
if self
is empty.
a = [1, 2, 3]
a.sample # => 2
a.sample # => 1
a.sample(Random.new(1)) # => 3
#select(pattern)
¶
(pattern)
Returns an Array
with all the elements in the collection for which
pattern === element
.
[1, 3, 2, 5, 4, 6].select(3..5) # => [3, 5, 4]
["Alice", "Bob"].select(/^A/) # => ["Alice"]
#select(type : U.class) forall U
¶
(type : U.class) forall U
Returns an Array
with all the elements in the collection
that are of the given type.
ints = [1, true, nil, 3, false].select(Int32)
ints # => [1, 3]
typeof(ints) # => Array(Int32)
#select(&block : T -> )
¶
(&block : T -> )
Returns an Array
with all the elements in the collection for which
the passed block returns true
.
[1, 2, 3, 4, 5, 6].select { |i| i % 2 == 0 } # => [2, 4, 6]
#skip(count : Int)
¶
(count : Int)
Returns an Array
with the first count elements removed
from the original collection.
If count is bigger than the number of elements in the collection, returns an empty array.
[1, 2, 3, 4, 5, 6].skip(3) # => [4, 5, 6]
#skip_while
¶
Skips elements up to, but not including, the first element for which
the block returns nil
or false
and returns an Array
containing the remaining elements.
[1, 2, 3, 4, 5, 0].skip_while { |i| i < 3 } # => [3, 4, 5, 0]
#sum(initial)
¶
(initial)
Adds initial and all the elements in the collection together. The type of initial will be the type of the sum, so use this if (for instance) you need to specify a large enough type to avoid overflow.
Expects all element types to respond to #+
method.
[1, 2, 3, 4, 5, 6].sum(7) # => 28
If the collection is empty, returns initial.
([] of Int32).sum(7) # => 7
#sum
¶
Adds all the elements in the collection together.
Expects all element types to respond to #+
method.
[1, 2, 3, 4, 5, 6].sum # => 21
This method calls .additive_identity
on the yielded type to determine the
type of the sum value.
If the collection is empty, returns additive_identity
.
([] of Int32).sum # => 0
#sum
¶
Adds initial and all results of the passed block for each element in the collection.
["Alice", "Bob"].sum(1) { |name| name.size } # => 9 (1 + 5 + 3)
Expects all types returned from the block to respond to #+
method.
If the collection is empty, returns initial.
([] of String).sum(1) { |name| name.size } # => 1
#sum
¶
Adds all results of the passed block for each element in the collection.
["Alice", "Bob"].sum { |name| name.size } # => 8 (5 + 3)
Expects all types returned from the block to respond to #+
method.
This method calls .additive_identity
on the yielded type to determine the
type of the sum value.
If the collection is empty, returns additive_identity
.
([] of Int32).sum { |x| x + 1 } # => 0
#take_while
¶
Passes elements to the block until the block returns nil
or false
,
then stops iterating and returns an Array
of all prior elements.
[1, 2, 3, 4, 5, 0].take_while { |i| i < 3 } # => [1, 2]
#tally : Hash(T, Int32)
¶
: Hash(T, Int32)
Tallies the collection. Returns a hash where the keys are the elements and the values are numbers of elements in the collection that correspond to the key.
["a", "b", "c", "b"].tally # => {"a"=>1, "b"=>2, "c"=>1}
#to_a
¶
Returns an Array
with all the elements in the collection.
(1..5).to_a # => [1, 2, 3, 4, 5]
#to_h
¶
Creates a Hash
out of an Enumerable where each element is a
2 element structure (for instance a Tuple
or an Array
).
[[:a, :b], [:c, :d]].to_h # => {:a => :b, :c => :d}
Tuple.new({:a, 1}, {:c, 2}).to_h # => {:a => 1, :c => 2}
#to_h(&block : T -> Tuple(K, V)) forall K, V
¶
(&block : T -> Tuple(K, V)) forall K, V
Creates a Hash
out of Tuple
pairs (key, value) returned from the block.
(1..3).to_h { |i| {i, i ** 2} } # => {1 => 1, 2 => 4, 3 => 9}
#zip(*others : Indexable | Iterable | Iterator
¶
(*others : Indexable | Iterable | Iterator
Yields elements of self
and others in tandem to the given block.
Raises an IndexError
if any of others doesn't have as many elements
as self
. See zip?
for a version that yields nil
instead of raising.
a = [1, 2, 3]
b = ["a", "b", "c"]
a.zip(b) { |x, y| puts "#{x} -- #{y}" }
The above produces:
1 -- a
2 -- b
3 -- c
An example with multiple arguments:
(1..3).zip(4..6, 7..9) do |x, y, z|
puts "#{x} -- #{y} -- #{z}"
end
The above produces:
1 -- 4 -- 7
2 -- 5 -- 8
3 -- 6 -- 9
#zip(*others : Indexable | Iterable | Iterator)
¶
(*others : Indexable | Iterable | Iterator)
Returns an Array
of tuples populated with the elements of self
and
others traversed in tandem.
Raises an IndexError
if any of others doesn't have as many elements
as self
. See zip?
for a version that yields nil
instead of raising.
a = [1, 2, 3]
b = ["a", "b", "c"]
a.zip(b) # => [{1, "a"}, {2, "b"}, {3, "c"}]
An example with multiple arguments:
a = [1, 2, 3]
b = (4..6)
c = 8.downto(3)
a.zip(b, c) # => [{1, 4, 8}, {2, 5, 7}, {3, 6, 6}]
#zip?(*others : Indexable | Iterable | Iterator
¶
(*others : Indexable | Iterable | Iterator
Yields elements of self
and others in tandem to the given block.
All of the elements in self
will be yielded: if others don't have
that many elements they will be returned as nil
.
a = [1, 2, 3]
b = ["a", "b"]
a.zip?(b) { |x, y| puts "#{x.inspect} -- #{y.inspect}" }
The above produces:
1 -- "a"
2 -- "b"
3 -- nil
An example with multiple arguments:
(1..3).zip?(4..5, 7..8) do |x, y, z|
puts "#{x.inspect} -- #{y.inspect} -- #{z.inspect}"
end
The above produces:
1 -- 4 -- 7
2 -- 5 -- 8
3 -- nil -- nil
#zip?(*others : Indexable | Iterable | Iterator)
¶
(*others : Indexable | Iterable | Iterator)
Returns an Array
of tuples populated with the elements of self
and
others traversed in tandem.
All elements in self
are returned in the Array. If matching elements
in others are missing (because they don't have that many elements)
nil
is returned inside that tuple index.
a = [1, 2, 3]
b = ["a", "b"]
a.zip?(b) # => [{1, "a"}, {2, "b"}, {3, nil}]
An example with multiple arguments:
a = [1, 2, 3]
b = (4..5)
c = 8.downto(7)
a.zip?(b, c) # => [{1, 4, 8}, {2, 5, 7}, {3, nil, nil}]