module Indexable(T)
¶
A container that allows accessing elements via a numeric index.
Indexing starts at 0. A negative index is assumed to be
relative to the end of the container: -1 indicates the last element,
-2 is the next to last element, and so on.
Types including this module are typically Array-like types.
Included modules
Enumerable
Iterable
Direct including types
Array(T)
BitArray
Deque(T)
LLVM::ParameterCollection
Slice(T)
StaticArray(T, N)
Tuple(*T)
Methods¶
#[](index : Int)
¶
(index : Int)
Returns the element at the given index.
Negative indices can be used to start counting from the end of the array.
Raises IndexError if trying to access an element outside the array's range.
ary = ['a', 'b', 'c']
ary[0] # => 'a'
ary[2] # => 'c'
ary[-1] # => 'c'
ary[-2] # => 'b'
ary[3] # raises IndexError
ary[-4] # raises IndexError
#[]?(index : Int)
¶
(index : Int)
Returns the element at the given index.
Negative indices can be used to start counting from the end of the array.
Returns nil if trying to access an element outside the array's range.
ary = ['a', 'b', 'c']
ary[0]? # => 'a'
ary[2]? # => 'c'
ary[-1]? # => 'c'
ary[-2]? # => 'b'
ary[3]? # nil
ary[-4]? # nil
#bsearch(&block : T -> Bool)
¶
(&block : T -> Bool)
By using binary search, returns the first element
for which the passed block returns true.
If the block returns false, the finding element exists
behind. If the block returns true, the finding element
is itself or exists in front.
Binary search needs sorted array, so self has to be sorted.
Returns nil if the block didn't return true for any element.
[2, 5, 7, 10].bsearch { |x| x >= 4 } # => 5
[2, 5, 7, 10].bsearch { |x| x > 10 } # => nil
#bsearch_index(&block : T, Int32 -> Bool)
¶
(&block : T, Int32 -> Bool)
By using binary search, returns the index of the first element
for which the passed block returns true.
If the block returns false, the finding element exists
behind. If the block returns true, the finding element
is itself or exists in front.
Binary search needs sorted array, so self has to be sorted.
Returns nil if the block didn't return true for any element.
[2, 5, 7, 10].bsearch_index { |x, i| x >= 4 } # => 1
[2, 5, 7, 10].bsearch_index { |x, i| x > 10 } # => nil
#dig(index : Int, *subindexes)
¶
(index : Int, *subindexes)
Traverses the depth of a structure and returns the value, otherwise
raises IndexError.
ary = [{1, 2, 3, {4, 5, 6}}]
ary.dig(0, 3, 2) # => 6
ary.dig(0, 3, 3) # raises IndexError
#dig?(index : Int, *subindexes)
¶
(index : Int, *subindexes)
Traverses the depth of a structure and returns the value.
Returns nil if not found.
ary = [{1, 2, 3, {4, 5, 6}}]
ary.dig?(0, 3, 2) # => 6
ary.dig?(0, 3, 3) # => nil
#each(*, within range : Range
¶
(*, within range : Range
Calls the given block once for all elements at indices within the given
range, passing each element as a parameter.
Raises IndexError if the starting index is out of range.
array = ["a", "b", "c", "d", "e"]
array.each(within: 1..3) { |x| print x, " -- " }
produces:
b -- c -- d --
#each
¶
Returns an Iterator for the elements of self.
a = ["a", "b", "c"]
iter = a.each
iter.next # => "a"
iter.next # => "b"
The returned iterator keeps a reference to self: if the array
changes, the returned values of the iterator change as well.
#each
¶
Calls the given block once for each element in self, passing that
element as a parameter.
a = ["a", "b", "c"]
a.each { |x| print x, " -- " }
produces:
a -- b -- c --
#each(*, start : Int, count : Int
¶
(*, start : Int, count : Int
Calls the given block once for count number of elements in self
starting from index start, passing each element as a parameter.
Negative indices count backward from the end of the array. (-1 is the last element).
Raises IndexError if the starting index is out of range.
Raises ArgumentError if count is a negative number.
array = ["a", "b", "c", "d", "e"]
array.each(start: 1, count: 3) { |x| print x, " -- " }
produces:
b -- c -- d --
#each_index(&) : Nil
¶
(&) : Nil
Calls the given block once for each index in self, passing that
index as a parameter.
a = ["a", "b", "c"]
a.each_index { |x| print x, " -- " }
produces:
0 -- 1 -- 2 --
#each_index
¶
Returns an Iterator for each index in self.
a = ["a", "b", "c"]
iter = a.each_index
iter.next # => 0
iter.next # => 1
The returned iterator keeps a reference to self. If the array
changes, the returned values of the iterator will change as well.
#each_index(*, start : Int, count : Int
¶
(*, start : Int, count : Int
Calls the given block once for count number of indices in self
starting from index start, passing each index as a parameter.
Negative indices count backward from the end of the array. (-1 is the last element).
Raises IndexError if the starting index is out of range.
Raises ArgumentError if count is a negative number.
array = ["a", "b", "c", "d", "e"]
array.each_index(start: -3, count: 2) { |x| print x, " -- " }
produces:
2 -- 3 --
#each_permutation(size : Int = self.size, reuse = false)
¶
(size : Int = self.size, reuse = false)
Returns an Iterator over each possible permutation of size of self.
iter = [1, 2, 3].each_permutation
iter.next # => [1, 2, 3]
iter.next # => [1, 3, 2]
iter.next # => [2, 1, 3]
iter.next # => [2, 3, 1]
iter.next # => [3, 1, 2]
iter.next # => [3, 2, 1]
iter.next # => #<Iterator::Stop>
By default, a new array is created and returned for each permutation.
If reuse is given, the array can be reused: if reuse is
an Array, this array will be reused; if reuse if truthy,
the method will create a new array and reuse it. This can be
used to prevent many memory allocations when each slice of
interest is to be used in a read-only fashion.
#each_permutation(size : Int = self.size, reuse = false, &) : Nil
¶
(size : Int = self.size, reuse = false, &) : Nil
Yields each possible permutation of size of self.
a = [1, 2, 3]
sums = [] of Int32
a.each_permutation(2) { |p| sums << p.sum } # => nil
sums # => [3, 4, 3, 5, 4, 5]
By default, a new array is created and yielded for each permutation.
If reuse is given, the array can be reused: if reuse is
an Array, this array will be reused; if reuse if truthy,
the method will create a new array and reuse it. This can be
used to prevent many memory allocations when each slice of
interest is to be used in a read-only fashion.
#empty?
¶
Returns true if self is empty, false otherwise.
([] of Int32).empty? # => true
([1]).empty? # => false
#equals?(other : Indexable
¶
View source
(other : Indexable
#equals?
¶
Determines if self equals other according to a comparison
done by the given block.
If self's size is the same as other's size, this method yields
elements from self and other in tandem: if the block returns true
for all of them, this method returns true. Otherwise it returns false.
a = [1, 2, 3]
b = ["a", "ab", "abc"]
a.equals?(b) { |x, y| x == y.size } # => true
a.equals?(b) { |x, y| x == y } # => false
#fetch(index, default)
¶
(index, default)
Returns the value at the index given by index, or when not found the value given by default.
a = [:foo, :bar]
a.fetch(0, :default_value) # => :foo
a.fetch(2, :default_value) # => :default_value
#fetch(index : Int
¶
(index : Int
Returns the element at the given index, if in bounds, otherwise executes the given block with the index and returns its value.
a = [:foo, :bar]
a.fetch(0) { :default_value } # => :foo
a.fetch(2) { :default_value } # => :default_value
a.fetch(2) { |index| index * 3 } # => 6
#index(offset : Int = 0
¶
(offset : Int = 0
Returns the index of the first object in self for which the block
returns true, starting from the given offset, or nil if no match
is found.
[1, 2, 3, 1, 2, 3].index(offset: 2) { |x| x < 2 } # => 3
#index(object, offset : Int = 0)
¶
(object, offset : Int = 0)
Returns the index of the first appearance of value in self
starting from the given offset, or nil if the value is not in self.
[1, 2, 3, 1, 2, 3].index(2, offset: 2) # => 4
#join(separator : String | Char | Number = "")
¶
(separator : String | Char | Number = "")
Optimized version of Enumerable#join that performs better when
all of the elements in this indexable are strings: the total string
bytesize to return can be computed before creating the final string,
which performs better because there's no need to do reallocations.
#last
¶
Returns the last element of self if it's not empty, or raises IndexError.
([1, 2, 3]).last # => 3
([] of Int32).last # raises IndexError
#last
¶
Returns the last element of self if it's not empty, or the given block's value.
([1, 2, 3]).last { 4 } # => 3
([] of Int32).last { 4 } # => 4
#last?
¶
Returns the last element of self if it's not empty, or nil.
([1, 2, 3]).last? # => 3
([] of Int32).last? # => nil
#permutations(size : Int = self.size)
¶
(size : Int = self.size)
Returns an Array with all possible permutations of size.
a = [1, 2, 3]
a.permutations # => [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutations(1) # => [[1],[2],[3]]
a.permutations(2) # => [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
a.permutations(3) # => [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutations(0) # => [[]]
a.permutations(4) # => []
#rindex(value, offset = size - 1)
¶
(value, offset = size - 1)
Returns the index of the last appearance of value in self, or
nil if the value is not in self.
If offset is given, it defines the position to end the search (elements beyond this point are ignored).
[1, 2, 3, 2, 3].rindex(2) # => 3
[1, 2, 3, 2, 3].rindex(2, offset: 2) # => 1
#rindex(offset = size - 1
¶
(offset = size - 1
Returns the index of the first object in self for which the block
returns true, starting from the last object, or nil if no match
is found.
If offset is given, the search starts from that index towards the
first elements in self.
[1, 2, 3, 2, 3].rindex { |x| x < 3 } # => 3
[1, 2, 3, 2, 3].rindex(offset: 2) { |x| x < 3 } # => 1
#sample(random = Random::DEFAULT)
¶
(random = Random::DEFAULT)
Optimized version of Enumerable#sample that runs in O(1) time.
a = [1, 2, 3]
a.sample # => 3
a.sample # => 1
a.sample(Random.new(1)) # => 2
#to_a
¶
Returns an Array with all the elements in the collection.
{1, 2, 3}.to_a # => [1, 2, 3]
abstract
#unsafe_fetch(index : Int)
¶
(index : Int)
Returns the element at the given index, without doing any bounds check.
Indexable makes sure to invoke this method with index in 0...size,
so converting negative indices to positive ones is not needed here.
Clients never invoke this method directly. Instead, they access
elements with #[](index) and #[]?(index).
This method should only be directly invoked if you are absolutely sure the index is in bounds, to avoid a bounds check for a small boost of performance.
#values_at(*indexes : Int)
¶
(*indexes : Int)
Returns a Tuple populated with the elements at the given indexes.
Raises IndexError if any index is invalid.
["a", "b", "c", "d"].values_at(0, 2) # => {"a", "c"}